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KEY POINTS
e (limate intervention research is expanding as current mitigation efforts to limit warming
below crucial targets are falling short.
e Substantial knowledge gaps exist on the potential impacts of climate intervention
strategies on marine ecological systems.
e We review the potential impacts of climate intervention on marine ecosystems, including

biotic and abiotic factors.



56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

ABSTRACT

Rising global temperatures pose significant risks to marine ecosystems, biodiversity and
fisheries. Recent comprehensive assessments suggest that large-scale mitigation efforts to limit
warming are falling short, and all feasible future climate projections, including those that
represent optimistic emissions reductions, exceed the Paris Agreement’s 1.5°C or 2° warming
targets during this century. While avoiding further CO> emissions remains the most effective
way to prevent environmental destabilization, interest is growing in climate interventions —
deliberate, large-scale manipulations of the environment aimed at reducing global warming.
These include carbon dioxide removal (CDR) to reduce atmospheric CO> concentrations over
time, and solar radiation modification (SRM), which reflects sunlight to lower surface
temperatures but does not address root CO> causes. The effects of these interventions on marine
ecosystems, both direct and in combination with ongoing climate change, remain highly
uncertain. Given the ocean’s central role in regulating Earth’s climate and supporting global food
security, understanding these potential effects is crucial. This review provides an overview of
proposed intervention methodologies for marine CDR and SRM and outlines the potential trade-
offs and knowledge gaps associated with their impacts on marine ecosystems. Climate
interventions have the potential to reduce warming-driven impacts, but could also alter marine
food systems, biodiversity and ecosystem function. Effects will vary by pathway, scale, and
regional context. Pathway-specific impact assessments are thus crucial to quantify trade-offs
between plausible intervention scenarios as well as to identify their expected impacts on marine
ecosystems in order to prioritize scaling efforts for low-risk pathways and avoid high-risk

scenarios.
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PLAIN LANGUAGE SUMMARY

A rise in global temperatures from 1.5°C - 2°C or above historical levels threatens marine life,
ecosystems, biodiversity, and the sustainability of fisheries. Recent studies highlight that current
efforts to keep warming within critical limits are insufficient, and even optimistic future climate
scenarios predict that the 1.5°C threshold established by the Paris Agreement will be surpassed.
In this context, climate intervention strategies are being explored as ways to potentially reduce
the worsening effects of climate change and complement, not replace, decarbonization efforts.
These strategies aim to either remove carbon dioxide from the atmosphere or reflect sunlight
back into space to cool the Earth. While currently an understudied area of research, these
methods could have profound impacts on the ocean, including changes to sea surface
temperature and nutrient cycling, which in turn affect the abundance, distribution, and diversity
of marine life as well as the human communities that rely on marine resources. This review
synthesizes current research on the climate intervention strategies that are most likely to have
direct impacts on the marine environment, emphasizing knowledge gaps as they relate to the

potential impacts on marine ecosystems and the need for improved predictive models.
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1. INTRODUCTION

The unprecedented pace of physical and chemical changes in the atmosphere, ocean and land
resulting from anthropogenic climate change is driving widespread environmental disruption,
both on land and at sea (Malhi et al., 2020; Poloczanska et al., 2016). Changes in ocean
conditions are already altering many essential services provided by marine systems, including
commercial and subsistence fisheries, affecting food security, livelihoods, and overall wellbeing
(Allison & Bassett, 2015; Blanchard & Novaglio, 2024; Cheung et al., 2010; FAO, IFAD,
UNICEF, WFP and WHO, 2018). Ambitious international targets for greenhouse gas emissions
have been established to prevent dangerous impacts of a warmer climate (IPCC, 2023) and to
achieve ocean sustainability (IPBES, 2019; UN DESA, 2022). Despite concerted international
efforts and progress in some regions towards these targets, global outcomes remain uneven, and
key goals have yet to be achieved in the absence of consistent enforcement and accountability
mechanisms (Rogelj et al., 2016; United Nations Environment Programme, 2022). An overshoot
of the aspirational 1.5°C warming threshold established by the Paris Agreements is imminent, as
are a number of climate tipping points that would be irreversible on human timescales, such as
permanent loss of land ice and the resulting sea level rise that would displace hundreds of
millions of people, as well as loss of terrestrial and marine species and ecosystems (McMichael
et al., 2020; Penn & Deutsch, 2022). Given the immediacy of this climate crisis, a portfolio of
possible solutions beyond reducing greenhouse gas emissions is being explored to limit long-

term temperature increases above 1.5°C (McGrath et al., 2025).

Future climate scenarios, such as the Shared Socioeconomic Pathways (SSPs), have emphasized
that cutting emissions alone is insufficient to avoid crossing the aspirational threshold of 1.5°C
warming, and negative emissions are needed to achieve a more stable climate, involving the
removal of gigatons of carbon dioxide (CO») from the atmosphere by mid-century (Loomis et al.,
2022; O’Neill et al., 2017; Rogelj et al., 2016). How this industrial-scale carbon dioxide removal
(CDR) will be achieved is not yet clear. The ocean is an obvious reservoir, as it contains the
majority of the carbon in the Earth’s surface environment and continuously takes up carbon from
the atmosphere and land (Smith et al., 2024). Thus, there is a growing push to explore ocean-

based carbon dioxide removal (hereafter referred to as marine CDR or simply CDR) through a
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variety of mechanisms that could, in theory, accelerate the natural sequestration of anthropogenic
carbon into the ocean (Figure 1; Smith et al., 2024). At the same time, there is a growing effort to
explore technologies that could cool the planet by modifying the solar radiation balance, termed
solar radiation modification (SRM). The original and current vision for SRM was as a temporary
implementation to stabilize or lower global temperatures while emissions are reduced (Long &
Shepherd, 2014). Here, we review what is known and what needs to be determined for

understanding the impacts of these two types of climate interventions on marine ecosystems.

Climate intervention is broadly defined as the deliberate large-scale manipulation of the
environment to offset anthropogenic global warming by either reflecting sunlight back into space
(i.e., SRM) or reducing the levels of atmospheric greenhouse gases (i.e., CDR; National
Academies of Sciences, Engineering, and Medicine, 2021, 2022; Shepherd, 2012). Consideration
of climate interventions has been controversial due to perceived concerns that furthering the
development of these techniques could lead to a sense of complacency, with the belief that
intervention technology can single-handedly address the problem without emission reductions, or
that the international cooperation for global scale climate modification is not likely (Biermann et
al., 2022; Fankhauser et al., 2022; Robock, 2012; Rogelj, 2023). Serious scientific consideration
1s necessary, however, as some form of CDR is almost certain to be essential to meet global
temperature targets (alongside large-scale emissions reduction efforts) and SRM is the only

known potential option for rapidly reducing surface temperatures.

The ocean plays a pivotal role in the development of the subset of CDR strategies that leverage
and enhance the natural biogeochemical processes that transfer CO» from the atmosphere into the
ocean (Figure 1; Boyd et al., 2022; Renforth & Henderson, 2017). Broadly, these CDR strategies
can be separated into biotic and abiotic approaches. Biotic methods, such as the cultivation of
biomass, rely on photosynthesis to capture CO; and ultimately store it at depth as organic matter
or dissolved inorganic carbon (DIC). Abiotic methods, on the other hand, alter the carbon
chemistry of the surface ocean to enhance its ability to absorb CO> and increase ocean DIC
(National Academies of Sciences, Engineering, and Medicine, 2022). Millions of dollars in
venture capital funding have been directed towards start-ups promising to amplify the ocean’s

carbon sink, though none are currently operating at the scale necessary to sequester climatically
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relevant amounts of carbon (Smith et al., 2024). Despite this increasing momentum, all CDR
methods that involve ocean uptake or storage could impact marine ecosystems, and these impacts

must be better constrained.

Of the proposed SRM technologies, stratospheric aerosol injection (SAI), where light scattering
particles are injected into the stratosphere, and marine cloud brightening (MCB), where clouds
are seeded over the ocean surface, have received the most attention (Figure. 1; Kravitz et al.,
2013; United Nations Environment Programme, 2023). For SAI in particular, there are very few
doubts that, if deployed at scale, it would partially or completely offset global mean temperature
increases (Tilmes et al., 2018; Visioni et al., 2021), although there are questions over many
regional or seasonal impacts and potential other effects it might have (Kravitz & MacMartin,
2020; Robock, 2020). On the other hand, there are still doubts over the feasibility and efficacy of
global scale MCB, together with potential regionally uneven impacts (Haywood et al., 2023;
Hirasawa et al., 2023; Rasch et al., 2024). Perception of SRM among those familiar is highly
diverse and contentious for reasons including ethics concerns, general mistrust of technocratic
interventions, lack of international governance and regulatory frameworks, risk of termination
shock (i.e., rapid warming if SRM was suddenly halted), as well as unknown long- and short-
term side effects and high uncertainty (Biermann et al., 2022; Morton, 2015; Parker & Irvine,
2018; Usman et al., 2022; Zarnetske et al., 2021).

Understanding the potential ecological impacts of climate intervention strategies requires a
broader understanding of the underlying processes shaping marine ecosystems. Climate-driven
shifts in net primary productivity (NPP) can have profound and multifaceted impacts on the food
web by influencing the availability and quality of resources, as well as through impacts to the
marine carbon cycle. Marine primary producers (such as phytoplankton, algae, seagrasses) use
photosynthesis, which requires light and nutrients, to produce an excess of organic carbon
beyond what is needed to sustain them. This excess organic carbon (i.e., NPP) can be consumed
by secondary producers like zooplankton, which in turn are consumed by larger animals,
transferring energy up the food chain through successive trophic levels (Ryther, 1976).
Perturbations to plankton community structure can affect the efficiency of trophic transfer,

leading to increases or decreases in the number of larger animals a given amount of NPP can
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support (Ryther, 1976; Stock et al., 2014). Similarly, shifts in plankton community structure
affect the efficiency of carbon sequestration by modifying the biological pump, the suite of
processes by which inorganic carbon is converted to organic matter and then transported to the
deep ocean (Kwiatkowski et al., 2023; Siegel et al., 2023). Determining how these
interconnected processes will be impacted by deliberate, large-scale intervention remains a key

research priority.

Due to the nonlinearity of physical, biogeochemical, and especially ecosystem processes, there is
a high level of uncertainty in how marine ecosystems would respond to climate intervention
scenarios, building on the uncertainty of how marine ecosystems respond to climate change (i.e.,
Heneghan et al., 2021; Mariani et al., 2020; Petrik et al., 2022; Tagliabue et al. 2021). The
majority of SRM studies have focused on the atmospheric or climatic response to the
intervention, without direct analysis of ecosystem impacts (e.g., Kravitz et al., 2014; Tilmes et
al., 2016), with some inferring potential changes to ecosystems from proxy metrics, such as
temperature or NPP (e.g., Heck et al., 2018; Proctor et al., 2018; Tjiputra et al., 2016). Similarly,
some modeling studies for CDR have assessed impacts to marine ecosystems indirectly through
shifts in plankton biomass (e.g., Kwiatkowski et al., 2015), oxygen levels (e.g., Keller et al.,
2014), or measures of carbonate chemistry such as pH (e.g., Gonzalez, 2016; He & Tyka, 2023;
Wang, 2023). Given the uncertainties surrounding the relative impacts of ocean acidification,
deoxygenation, extreme temperatures, and shifts in ocean circulation patterns, substantial further
research is required to determine if the overall net effect of climate interventions will be more or
less beneficial for marine ecosystems than non-intervention scenarios. Few studies to date have
evaluated the impacts of CDR or SRM on food webs and fisheries, research on key ecosystem
drivers such as temperature and NPP remains limited (Zarnetske et al., 2021), and while some
work has explored some combined interventions (e.g., Jiirchott et al., 2024; Keller et al., 2014),
this area remains significantly understudied. Therefore, the overall objective for this review is to
examine the potential mechanisms by which climate intervention might impact marine
ecosystems in an effort to guide further research, contribute to future model forcing scenarios,
and begin to develop a process-based framework that can compare marine ecosystem impacts

across a diverse suite of potential pathways.
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Here, we 1) review projected impacts to marine ecosystems in future climate scenarios without
intervention; 2) introduce marine CDR and SRM strategies and outline the current state of
knowledge and gaps about impacts on marine ecosystems; 3) synthesize available literature
working to quantify the impacts of climate intervention on marine ecosystems; 4) outline key
processes critical to understanding climate intervention impacts that are not currently captured by
climate and ecosystem models and discuss how they could be incorporated; and 5) emphasize the
value of co-design between climate modelers and end users to improve the relevance and utility
of impact assessments. This review is intended to support interdisciplinary communication
between the marine ecological, CDR, and SRM communities and to help identify and prioritize
research pathways for understanding marine impacts of climate intervention strategies. We
emphasize that holistically assessing ocean, ecosystem, and fisheries-based impacts is necessary
for effective climate intervention planning and implementation due to the relevance for global

food security, biodiversity, and ecosystem services.
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Climate Intervention Methods
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Figure 1. Illustration of the climate intervention methods reviewed in this paper to either
increase the amount of sunlight reflected back into space (stratospheric aerosol injection and
marine cloud brightening) or remove carbon dioxide from the atmosphere (ocean-based

approaches for carbon dioxide removal).

2. PROJECTED IMPACTS TO MARINE ECOSYSTEMS WITHOUT INTERVENTION

Patterns of warming, deoxygenation, and acidification, driven largely by CO: emissions, are
reshaping the global ocean (Barnett et al., 2005; Poloczanska et al., 2016). Observed shifts in the
ocean’s physical state, including alterations in salinity, density, and circulation (Doney, 2010;
Henson et al., 2016), in turn affect nutrient transport to plankton, further deplete oxygen, and
exacerbate acidification (Bopp et al., 2013; Doney et al., 2012; Silsbe et al., 2025; Van De Waal

& Litchman, 2020). Without intervention, projected changes are poised to alter marine
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ecosystems (Kwiatkowski et al., 2020; Lotze et al., 2019; Tittensor et al., 2021). Earth system
models (ESMs) are one of the primary tools available to represent the marine environment and
carbon cycle under future scenarios (Petrik et al., 2022; Stock et al., 2011). Simulations from the
Coupled Model Intercomparison Project (CMIP), a collaborative framework comprising many
distinct Earth system models, have been used to examine changes to ecosystem drivers (e.g.,
temperature, pH, NPP) through the end of the century. Across both the CMIP5 (Bopp et al.,
2013) and CMIP6 (Kwiatkowski et al., 2020) simulation ensembles, models agree on the
direction and magnitude of surface temperature increases and pH decreases, both on average and

regionally. Other ecosystem drivers have less certain projections.

For example, while the overall decline in upper-ocean oxygen and euphotic zone nitrate
concentration has high model agreement across the CMIP5 and CMIP6 ensembles, regional
patterns of change for both drivers remain uncertain, particularly in terms of scale and
geographic distribution (Kwiatkowski et al., 2020). Oxygen and nitrate changes are understood
to be largely due to warming-enhanced stratification, which inhibits vertical mixing and thus
nutrient delivery and oxygen ventilation below the mixed layer, with modulation by temperature
driven changes in remineralization rates. The projected decline in oxygen is expected to
contribute to a compression of habitable zones for many marine fish species (Deutsch et al.,
2015), among numerous biogeochemical and ecosystem impacts, especially when combined with
other stressors (Gruber, 2011; Kim et al., 2023; Laffoley & Baxter, 2019; Steckbauer et al.,
2020).

The future of net primary production, the base of the marine food web, is least certain. Models
agree on increases of NPP in polar regions, driven by reduction in sea ice coverage and increased
stratification (Kwiatkowski et al., 2020; Skyllas et al., 2019; Vancoppenolle et al., 2013). In
other regions, on average, a future decrease in marine NPP is projected, consistent with satellite-
based studies (Silsbe et al., 2025). However, the magnitude, spatial distribution, and sometimes
direction of the simulated NPP trends have high disagreement (Nakamura & Oka, 2019;
Kwiatkowski et al., 2020; Tagliabue et al., 2021; see section 5.1 for ESM uncertainty). Despite
these uncertainties, modeling intercomparisons of marine consumers indicate that any future

declines in phytoplankton biomass or productivity will lead to a greater degree of change in

11
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zooplankton and fishes, i.e., trophic amplification (Kwiatkowski et al., 2019; Lotze et al., 2019;
Tittensor et al., 2021). Furthermore, NPP is an imperfect measure of energy at the base of the
food chain, as the associated organic matter can be remineralized without being consumed by
animals like zooplankton or fish (Dugdale & Goering, 1967). Thus, plankton biomasses and
export production may be better metrics to assess ecosystem dynamics and carbon sequestration,
but ESM projections of these variables are often more uncertain than NPP (Kwiatkowski et al.,

2020; Laufkotter et al., 2016; Petrik et al., 2022).

Ocean acidification can be harmful for marine organisms that construct their shells or skeletons
out of calcium carbonate (CaCO3) minerals, which become more soluble in acidic environments
(Hofmann et al., 2010; Raven et al., 2005). When the ocean absorbs excess CO2 from the
atmosphere, this CO; reacts with seawater in a series of temperature-sensitive chemical
reactions, decreasing the potential hydrogen (pH) and the saturation states for the CaCOs3
minerals calcite and aragonite (see Section 4.4 for further discussion). Calcification then
becomes much more energy-consuming, while existing CaCOs3 structures begin to weaken and
could dissolve entirely. Calcifying primary producers (i.e., coccolithophores), as well as common
zooplanktonic organisms (e.g., pteropods), are affected by pH and saturation state changes
(Bednarsek et al., 2019; Krumhardt et al., 2017, 2019), as are coral, molluscs, and echinoderms
(Doney et al., 2009). Multi-decadal declines in average surface ocean pH, as well as the
saturation states of calcite and aragonite (Qarg) have already been observed at numerous
locations globally, surpassing natural variability (Bates et al., 2014; Dore et al., 2009; Takahashi
et al., 2014; Williamson & Turley, 2012). CMIP5 and CMIP6 models capture this historical
trend and estimate that ocean pH could see an average decrease of up to 0.5 by 2100 while the
aragonite saturation state could decrease by 0.9-1.4 depending on the scenario, resulting in
potentially irreversible impacts on biogeochemical and ecological processes (Kwiatkowski et al.,
2020; IPCC, 2023; Williamson & Turley, 2012). Coral reef net calcification and subsequent
accretion beyond 2050 is not projected to continue at sustainable rates even under low emissions
scenarios and could become negative under even moderate emissions scenarios (Cornwall et al.,
2021). Numerous studies have examined aragonite undersaturation and its resulting decrease in
coral reef calcification (Chan & Connolly, 2013; McMabhon et al., 2013; Silverman et al., 2007).

Previous literature suggests lower sensitivity to acidity fluctuations in more mobile marine

12
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species, although the cumulative impacts of warming and acidification are largely unknown and

crucial to quantify (Baag & Mandal, 2022; Kroeker et al., 2013).

Disruptions to lower trophic levels as a result of a changing climate will likely result in shifts and
alterations to the productivity of the marine food web and higher trophic levels (Heneghan et al.,
2019; Munday et al., 2008). A comprehensive analysis combining multiple CMIP6 Earth system
models and fisheries models as part of the Fisheries and Marine Ecosystem Model
Intercomparison Project (FishMIP) found that, without the inclusion of fishing impacts, mean
consumer biomass will decline ~19% by end of century under a high emissions scenario, while a
low emissions, strong mitigation scenario will still result in a biomass decrease of 7% (Tittensor
et al., 2021). Projected biomass changes reveal declines in equatorial regions due to nutrient loss
and increases in the Arctic driven by reduced sea ice and extended productive seasons,
highlighting a north-south gradient in climate change impacts (Tittensor et al., 2021). By
combining estimates of fish stock status based on catch with a dynamic bioclimate envelope
model, Cheung et al. (2022) projected biomass rebuilding rates of exploited species under
different scenarios of future warming. Results indicate that, without substantial climate
mitigation measures and robust fisheries management, the potential of biomass rebuilding to
historically unexploited levels in many marine ecoregions will not be possible. Further, due to
specific habitat requirements and limited geographical ranges, risk of extinction is
disproportionately greater for endemic species, with one synthesis study estimating that 54% of
marine endemic species assessed were at risk under numerous future warming scenarios (Manes

etal., 2021).

The magnitude of potential loss to marine megafauna under future climate scenarios can be
difficult to quantify as climate-induced changes often coincide with an uptick in anthropogenic
activities (i.e., exploitation, gear entanglement, etc.) as well as shifts in prey distribution, thereby
increasing uncertainty in predictions (Gulland et al., 2022; Simmonds & Eliott, 2009). The
projected loss of marine mammal species richness and diversity across all emissions scenarios
would disrupt ecosystem function and stability, with especially high species loss in the North
Pacific and in higher emissions scenarios (Albouy et al., 2020). Additional impact or risk

assessments specific to marine megafauna have linked behavioral impairments in sharks to ocean
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acidification (Rosa et al., 2017), changes in marine turtle dispersal patterns to intensifying storms
(DuBois et al., 2020), and contractions in sea ice extent to breeding failure in penguins (Fretwell
et al., 2023). At the same time, future warming is projected to hinder or even reverse the
recovery of baleen whales to historical whaling activity (Tulloch et al., 2019). Such studies
demonstrate not only the various interconnected components of a changing climate, they also
highlight additional metrics that exist beyond a temperature target for parsing climate impacts at
multiple spatiotemporal scales, metrics that ultimately define climate resilience. The current
projections of marine ecosystem health in all emissions-driven future climate scenarios clearly
indicate severe losses in biodiversity, function, and food security (Blanchard et al., 2017; Boyce

et al., 2022) that increase with warming, motivating investigation of climate intervention.

3. CARBON DIOXIDE REMOVAL

Carbon dioxide removal (CDR) methods impact global atmospheric CO> concentrations directly
and therefore aim to address the root cause of changes in global temperatures (McGrath et al.,
2025). All of the CDR methods discussed here aim to redistribute carbon from the atmosphere
into the ocean and keep it there as long as possible (Figure 1; Doney et al., 2024), but vary in
their efficiency and durability (National Academies of Sciences, Engineering, and Medicine,
2021; Siegel et al., 2021, 2023). Biotic CDR techniques rely on photosynthesis to convert
atmospheric CO; or surface ocean dissolved inorganic carbon (DIC) into biomass and then move
that biomass to deeper water or sediments for storage. In contrast, abiotic CDR techniques, such
as alkalinity enhancement, increase the capacity of the surface ocean to absorb atmospheric CO>
by adding alkalinity and/or manipulating pH. The potential effects of these methods on marine
ecosystems depend substantially on the details of the specific pathway proposed, how it is

implemented, and the location of deployment.

3.1 Biotic methods for ocean-based CDR

Biotic CDR techniques aim to amplify an Earth system feedback that is believed to have cooled
the climate during a period of high CO> in the geologic past by sequestering large quantities of

organic carbon in marine sediments (Jarvis et al., 2011). Marine ecosystems may be impacted by
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biotic CDR techniques that cultivate marine biomass in the surface ocean as well as those that
store biomass that originally grew on land. However, the mechanism and scale of impacts on
marine ecosystems will depend on the proposed organic material type and placement site
conditions. Biomass materials have a wide range of properties in ocean environments, which
may be further modified by processing prior to placement (compression, extraction to remove
valuable components, combination with minerals, or other treatment). The fate of biomass
materials in the environment is also strongly sensitive to choices about containment and sinking

methods (Raven et al., 2025).

3.1.1 Production and fate of biotic carbon

Similar to terrestrial afforestation, marine algae cultivation aims to convert CO> into organic
carbon. Unlike terrestrial afforestation, however, the CO; for marine biomass growth comes
from dissolved CO: in the surface ocean, which influences atmospheric CO> through the
subsequent re-equilibration process. Marine biomass-based CDR strategies thus interact with
marine ecosystems during cultivation as well as during breakdown and storage. Marine biomass
sources can be roughly divided into those that rely on microalgae, such as nutrient fertilization or
artificial upwelling for plankton growth, and those that rely on macroalgae, such as seaweed

farming.

Microalgae cultivation involves fertilization of phytoplankton, increasing their biomass
production (Figure 1). If microalgal biomass is exported below the mixed layer or into
sediments, it could lead to net sequestration of carbon from the atmosphere (NASEM, 2022).
The production of biomass in the surface ocean is limited by the availability of nutrients, largely
nitrate, phosphate, or iron, depending on location. Up to 33% of the global surface ocean is
primarily iron limited, with excess nitrogen and phosphorus available (Moore et al., 2001; Moore
et al., 2013; Ustick et al., 2021). These regions have potential for large increases in productivity
in response to a relatively small addition of iron. Iron fertilization allows phytoplankton to take
up available nitrogen and phosphate, resulting in carbon uptake and possible export to the deep
ocean, which can drive a depletion in surface ocean DIC that allows the surface ocean to absorb

additional carbon dioxide from the atmosphere (De Baar et al., 2005; Martin, 1990; Martin et al.,
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1991). However, the export efficiency of organic matter from the surface to the deep ocean is
highly uncertain and difficult to monitor, and the durability of sequestered carbon may be limited
by the generally short return time of shallow waters to the surface if carbon is not exported well
below the mixed layer (Buesseler et al., 2024; Doney et al., 2024; Jiang et al., 2024). Moreover,
model simulations demonstrating the reduced durability and elevated leakage (i.e., the loss of
stored carbon) of large-scale iron fertilization suggest it may not be as effective as alternative
marine CDR approaches (Aumont & Bopp, 2006; Keller et al., 2014; Siegel et al., 2021;
Tagliabue et al., 2023).

Macroalgae cultivation, or marine afforestation, refers to the farming or controlled growth of
large marine algae and involves selecting suitable species, establishing cultivation sites, and
managing the growth process (Figure 1; Ocean Visions and MBARI, 2022). Both Sargassum and
kelp (Macrocystis), which are types of macroalgae (seaweed), have high growth rates and low
nutrient requirements, making them relatively efficient sources of fixed carbon and good
candidates for marine afforestation (Krause-Jensen & Duarte, 2016; Macreadie et al., 2021). For
macroalgae, productivity is often macronutrient-limited (i.e., nitrate, phosphate) and would
require different strategies from those of microalgae cultivation for large-scale fertilization
(Williamson et al., 2022). Macroalgal carbon can be transferred to the deep sea via methods
ranging from free sinking to farms that harvest the biomass, extract high-value products, and sink
the residual (Elmer et al., 2023). In well-oxygenated deep ocean environments, most of the
carbon in macroalgae biomass is respired over days to months (Filbee-Dexter et al., 2022;
Pederson et al., 2021), releasing carbon as DIC that can be stored for decades to centuries or

longer, depending on the depth and location of breakdown.

As a potential alternative to cultivating vast quantities of new marine biomass, terrestrial biomass
sources such as waste products from agriculture and wood processing can also serve as inputs for
CDR with marine storage, a process termed biomass sinking (Keil et al., 2010; Strand &
Benford, 2009). These biomass sources rely on land-based nutrient systems that are relatively
well understood and impacted at scale due to agriculture (e.g., Gregg & Izaurralde, 2010; Muth
Jretal.,, 2013), and thus they avoid the direct impacts to marine ecosystems from marine

biomass cultivation. Strategies that rely on extant terrestrial infrastructure would also minimize
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disruption due to new infrastructure construction at sea. At the same time, increased demand for
biomass materials could incentivize shifts in agricultural practices that could indirectly impact
marine ecosystems through changes in nutrient or sediment runoff (Costello et al., 2009; Donner

& Kucharik, 2008).

Many of the potential ecosystem impacts of biomass storage in the deep ocean depend on the
degradation resistance (“recalcitrance”) of the biomass used, in the context of the processes
driving breakdown in the storage environment. Fresh biomass is composed of a spectrum of
biomaterials ranging from highly labile (rapidly consumed) molecules like amino acids, sugars,
and nucleic acids, which typically have lifespans of hours or less in the surface ocean, to
recalcitrant biopolymers like lignin, which can persist in the environment for hundreds of years
or longer (Hansell, 2013; Tegelaar et al., 1989). Breakdown rate and site circulation work
together to influence the intensity of acute chemical change near the biomass storage site as well

as the distribution of soluble breakdown products.

3.1.2 Ecosystem impacts of biotic CDR

The cultivation of macroalgae or microalgae at scale would represent a potentially massive
perturbation of marine net primary productivity (NPP), with positive or negative impacts for
food webs depending on scale and location (Oschlies et al., 2025). For example, augmented algal
growth could drive shifts in local primary producer and zooplankton communities by shading the
upper water column or by changing the availability of nutrients for phytoplankton, leading to
food-web impacts and potentially impacting local fisheries (Gallo et al., 2025; Levin et al.,
2023). Macroalgae can also act as natural fish aggregating devices by providing refuge from
predators as well as substrates for other organisms to grow on, thereby aiding in their dispersal.
Microalgae, particularly large diatom blooms, may also act as a potential substrate for
colonization by microbes. Drifting macroalgae like Sargassum can travel vast distances, and
even those macroalgae that grow attached to substrates can be extensively transported as fronds
physically break off (Krause-Jensen & Duarte, 2016). By transporting “passenger’” organisms
living in seaweed offshore, macroalgal biomass may introduce species into new areas.

Additionally, macroalgae can attract scavengers due to physical structure/substrate, food source
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and novel ecosystem, with complex effects on organism dispersal, genetic diversity of natural

populations, and viral blooms (Alberto et al., 2010; Lyons et al., 2014).

Changes in the nutrient uptake in one region can have large impacts both locally and in
downstream environments. For marine biomass cultivation, shifts in the relative utilization of
different macro- and micro-nutrients (nitrate vs. phosphate vs. iron and other trace metals) by
different types of primary producers can impact competition patterns among other types of
organisms (Berger et al., 2023). Iron fertilization could further favor Pseudonitzschia, a diatom
genus known to produce the harmful neurotoxin domoic acid (Silver et al., 2010). Changes in
nutrient utilization patterns can also affect productivity in downstream locations due to “nutrient-
robbing” (Berger et al., 2023). For example, much of the excess nutrients in the iron-limited
Southern Ocean, a proposed location for large scale iron fertilization, fuel productivity in the
subtropical gyres. Thus, CDR-induced nutrient shifts in the Southern Ocean might lead to less
productivity and export in the subtropical gyres (Aumont & Bopp, 2006; Oschlies et al., 2010a;
Sarmiento & Orr, 1991). Modeling studies have thus predicted a potential negative link between
ocean iron fertilization and fisheries biomass on longer timescales, since a reduction of nutrients

would ultimately lead to a reduction in fish biomass (Tagliabue et al., 2023).

Macroalgae production at scale would likely lead to the production of vast amounts of dissolved
organic matter (DOM), both in the photic zone during growth and in deeper water during
senescence and breakdown (Krause-Jensen & Duarte, 2016; Perkins et al., 2022). As they grow,
certain types of macroalgae can release as much as 35% of their fixed carbon as DOM —
especially relatively labile, soluble polysaccharides (Paine et al., 2021 and references therein) —
and be an important food source for bacteria and other organisms. DOM is also released by other
forms of biomass, including both phytoplankton (especially diatoms) and terrestrial biomass,

although the chemical form of that DOM differs among biomass types (Wada et al., 2008).

The effects of biomass cultivation and storage on marine ecosystems represent a balance
between the rate of release of chemical species and the physical processes that transport, mix,
and dilute those signals in the ocean. During growth, dissolved and particulate marine biomass

can be passively released (i.e., by fertilized microalgae sinking as part of the biological pump, or
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by allowing DOM release or macroalgae fronds to break off in regions of afforestation), and its
downstream trajectory will depend on local currents. Since the sinking rates of biological
material are generally slow, natural dispersal is expected to have relatively large effects on mid-
water ecosystems where the biomass would decay (Omand et al., 2020; Ross et al., 2023).
Changing the sinking rate and/or composition of exported organic matter would alter its
availability to consumers like bacteria and zooplankton at midwater and deep pelagic
environments, with potential negative effects on their food webs. Shallower water masses also
generally upwell to the surface on relatively short timescales (Siegel et al., 2021), carrying the
signal of biomass breakdown. Alternatively, biomass packages may be actively placed in specific
regions (i.e., packaged macroalgae or terrestrial biomass being placed within specific zones on
the seafloor), minimizing exposure time of biomass to the pelagic water column and maximizing

sequestration time.

The breakdown of carbon biomass in the water column drives a variety of biogeochemical
changes with implications for natural upwelling systems and artificial upwelling impacts.
Artificial upwelling is a proposed CDR method where subsurface water rich in nutrients is
transported to the surface to stimulate microalgae growth (Jiirchott et al., 2024; Pan et al., 2016).
Although the nutrient contents of biomass sources vary, breakdown will always release some
amount of dissolved nutrients, DOM, and DIC to seawater. As the water masses containing CDR
products upwell, they could thus stimulate NPP through elevated nutrient and DOM
concentrations and modify the heterotrophic community (i.e., bacteria, zooplankton, fish).
However, artificial upwelling also brings cold, dense, DIC-rich water to the surface, which can
lead to surface cooling and indirect biogeochemical effects (Oschlies et al., 2010b), while also
reducing the efficiency of carbon storage by returning the dissolved DIC that was intended to be
sequestered in the deep ocean. Additionally, respiration in most of the modern ocean is powered
by dissolved O, which means that enhanced biomass breakdown would reduce O»
concentrations both locally and in downstream environments (Oschlies et al., 2025). Reduced
oxygen concentrations in upwelled water may also lead to an expansion or intensification of low-
oxygen zones in the upper thermocline (Levin et al., 2023), which could compress habitats for

zooplankton and fish and subsequently lead to an increase in predation and competition (Deutsch
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et al., 2015). Even at small scales, localized O> limitation is a likely consequence of biomass

placement in oxic zones, especially within physical piles with limited circulation.

On a global scale, the oxic respiration of additional biomass equivalent to 1 GtC yr™! would
enhance global O2 consumption in the deep ocean by ~125 Tmol O2/yr, a roughly 130% increase
in the rate of ocean O loss observed over the last several decades due to climate change
(Schmidtko et al., 2017). Especially if additional O, demand is localized to a region, this decline
has potentially severe consequences for both benthic and pelagic ecosystems (Deutsch et al.,
2015; Kim et al., 2023; Laffoley & Baxter, 2019; Oschlies et al., 2025). In contrast, in oxygen-
deprived environments, microorganisms can remineralize organic carbon through anaerobic
metabolisms such as nitrate reduction, sulfate reduction, or fermentation (Froelich et al., 1979;
Nissenbaum et al., 1972). Each of these metabolisms can release different species and have
different effects on pH, DIC, and nutrient concentrations (Middelburg et al., 2020; Raven et al.,
2024). Sulfate reduction is likely to be a particularly important pathway for microbial respiration
in anoxic waters due to the abundance of sulfate in seawater. Microbial sulfate reduction
produces relatively small effects on pH but relatively large potential effects on sulfide
concentrations. Naturally occurring releases of sulfide (e.g., from organic matter-rich shelf
sediments) are associated with toxicity to fish, although sulfide will oxidize relatively quickly
back to sulfate in the presence of oxygen (Hamukuaya et al., 1998; Schunck et al., 2013). Several
other potential products of microbial breakdown include greenhouse gases, such as N>O and
methane; their release would impact the overall assessment of climate outcomes for any

intervention.

The location and method of biomass placement can significantly shape the ecological
consequences of biomass-based CDR for both pelagic and benthic ecosystems. One option of
growing interest is using relatively isolated, deep anoxic basins as sites for biomass storage
(Raven et al., 2024). These basins, potentially including hypersaline brines as well as sulfidic
environments like the Black Sea, represent relatively closed systems that isolate sequestered
carbon due to their restricted circulation and also avoid direct impacts on benthic animals, which
are naturally absent due to the lack of oxygen. Whether the products of these microbial reactions

will impact ecosystems in the surrounding, oxygenated ocean will depend critically on the
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circulation at the selected site and the projected stability of its circulation and stratification into
the future. Overall, the selection of a sequestration site for biomass on the seafloor or, in some
cases, at mid-water depths, will be a key determinant of the potential impacts of biomass-based

CDR on fisheries and other marine ecosystems.

Benthic ecosystems are fundamental for habitat structure, nutrient cycling, and provide
numerous ecosystem services. On the seafloor, biomass materials will interact with benthic
communities (i.e., organisms that live in or on the seabed) as a substrate, a potential food source,
and a driver of geochemical change. The unique adaptations and ecosystem roles of these
communities are poorly understood; thus, impact predictions are difficult. However, organisms
adapted to low energy environments have a high likelihood of sensitivity to environmental
disruption and slow disturbance recovery (Gollner et al., 2017). During biomass placement on
the seafloor, these ecosystems are susceptible to physical disruptions from smothering by
biomass or induced sediment flows (Levin et al., 2023). Benthic animal communities are also
highly sensitive to oxygen availability. Local anoxia caused by seafloor respiration could cause
aerobic heterotrophs (worms, nematodes, microbes) to be disrupted, migrate or suffocate (Barry
et al., 2013; Oschilles et al., 2025), while microbial communities will adjust to favor organisms
that are well adapted for low-oxygen, high-biomass conditions, with hard-to-predict
consequences for ecosystem services and total carbon turnover (Orcutt et al., 2020). Examples of
discrete natural biomass additions like whale falls and kelp falls are known to attract a complex
community of grazers (Smith et al., 2015) and can impact the rate of breakdown for organic
matter already in the sediments, which can affect the efficiency of carbon storage (van Nugteren
et al., 2009; Zhu et al., 2024). Targeted seafloor placement may reduce the risks of direct

interactions between biomass-based CDR and sensitive or protected benthic communities.

Protecting and restoring marine ecosystems and fisheries, such as increasing the number of
whales or large fish, would provide obvious benefits to marine ecosystems and could be part of a
marine CDR portfolio, though there are substantial uncertainties in the potential carbon fluxes
(Figure 1; Bianchi et al., 2021; Collins et al., 2025; Mariani et al., 2025). Since marine food webs
play a central role for the oceanic biological pump, these efforts could have implications for

CDR, for example by increasing carbon export through fecal pellets and sinking carcasses

21



586
587
588
589
590
5901
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

(Mariani et al., 2020), though some simulations have shown no impacts to carbon storage
(Dupont et al., 2023). Similarly, while coastal ecosystems such as wetlands and mangrove forests
may store significant biomass per unit area, they cover a thin sliver of the Earth’s surface and
may release methane, a potent greenhouse gas (Cotovicz Jr. et al., 2024; Zheng et al., 2018).
Future research goals in this space include understanding the role of fish and fisheries in carbon
sequestration (Collins et al., 2025; World Bank, 2024) and to assess whether carbon removal by
ecosystem restoration could be substantial relative to the scale of negative emissions required in

the coming decades (Smith et al., 2024).

3.2 Abiotic methods for ocean-based CDR

Ocean alkalinity has been a major control on atmospheric carbon levels throughout Earth’s
history, acting as the primary thermostat for the planet. Changes in the delivery of alkalinity by
rivers and its eventual burial in marine sediments, driven by changes in atmospheric CO» and
associated climate patterns, have provided a self-regulating negative feedback on atmospheric
carbon concentrations over glacial-interglacial cycles and longer geologic timescales (Berner et
al., 1983; Renforth & Henderson, 2017). Ocean Alkalinity Enhancement (OAE) is a climate
intervention which seeks to increase the ocean's storage of dissolved inorganic carbon by adding
large amounts of alkaline materials to, or electrochemically increase the alkalinity of, the ocean

(Figure 1; NASEM, 2022).

Alkalinity is a complex chemical quantity, defined by the excess concentration of proton-
acceptors over proton-donors, which allows a solution to buffer changes in pH (Wolf-Gladrow
et al., 2007). Natural or anthropogenic alkalinity addition captures carbon by chemically shifting
the speciation of the carbonate system away from CO., thereby enabling the ocean to absorb
more CO; from the atmosphere. In the modern ocean only 1% of dissolved inorganic carbon
(DIC) exists as aqueous CO2 (CO2(aq) + carbonic acid). The rest is effectively trapped as
bicarbonate (HCO3") and carbonate (CO3%), ionic forms of carbon which cannot directly
exchange with the atmosphere. However, this partitioning of DIC between forms is highly
sensitive to alkalinity, making alkalinity the primary control on the ability of the ocean to absorb

atmospheric CO» (Dickson, 1992; Emerson & Hedges, 2008; Zeebe & Wolf-Gladrow, 2001).
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Without alkalinity, DIC in seawater would primarily exist as CO», resulting in much less carbon
being stored in the ocean and an order of magnitude more CO; in the atmosphere (DeVries,
2022). Additionally, because alkalinity buffers changes in pH (Dickson, 1981), OAE can
sequester carbon into the ocean without exacerbating, and potentially locally mitigating, the
well-established adverse impacts of ocean acidification on marine ecosystems (Butenschon et al.,

2021; Doney et al., 2009, 2020; Falkenberg et al., 2020).

Alkalinity can be derived from numerous mineral, electrochemical, and industrial sources
(Figure 1; Eisaman et al., 2023; National Academies of Sciences, Engineering, and Medicine,
2022). Seawater has naturally gained alkalinity over time through chemical weathering (i.e., rock
erosion) and the dissolution of carbonate (CaCO3) and silicate ((Mg,Fe)2Si04) minerals (Berner
et al., 1983). Minerally sourced OAE directly mimics this natural process by mining, grinding,
and dissolving carbonate and silicate rocks into the ocean (Renforth & Henderson, 2017).
Electrochemical methods (electrolysis, electrodialysis) can be more energy intensive, generating
alkalinity by splitting seawater into a highly alkaline and highly acidic stream, then safely
neutralizing the acid (Eisaman, 2024). Finally, some industrial waste products such as steel slags
are highly alkaline and could be repurposed and commodified, but may contain various trace
metals and other contaminants (Bach et al., 2019). Different sources of alkalinity come with
varying degrees of potential ecosystem impacts, but must be balanced against other energetic and

techno-economic tradeoffs (Caserini et al., 2022; Eisaman et al., 2023).

OAE can impact marine ecosystems through: 1) its intended direct perturbation to the carbonate
system; and 2) the collateral influence of additional chemicals contained in some alkalinity
sources. Direct perturbations to carbonate chemistry are independent of the source of alkalinity
and scale only with the quantity of alkalinity added and rate at which it is delivered; however,
secondary biogeochemical impacts vary with the specific source of alkalinity selected. Both
pathways, the perturbations to carbonate chemistry and the secondary impact of biologically-
active chemicals included in the alkalinity source, are most likely to impact marine ecosystems
predominantly through shifting the community composition of primary producers (Bach et al.,

2019; Henderson et al., 2008; Renforth & Henderson, 2017).
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3.2.1 Ecosystem impacts of direct alkalinity addition on carbonate chemistry

The response of carbonate chemistry in seawater to alkalinity addition proceeds through two
distinct phases, a highly concentrated but transient unequilibrated phase and a heavily diluted but
long-term equilibrated phase. Both could affect phytoplankton abundance and community
structure, but on different time scales. Initially, during the unequilibrated phase, the alkalinity
addition will reduce the concentration of CO> and bicarbonate, while increasing the pH and the
concentration of carbonate for a period of months to years (Bach et al., 2023; Feng et al., 2017).
During this period, reduced substrate (HCO3, COz) availability could limit calcification
(Krumbhardt et al., 2017), while reduced proton (H+) inhibition could enhance calcification (Bach
et al., 2015). The net effect may enhance calcification by increasing the Substrate-Inhibitor-Ratio
(HCOs;:H+; Bach et al., 2015) but could vary with species-specific impacts on calcifiers, which
could depend on the baseline carbonate chemistry of the perturbed waters (Bednarsek et al.,
2024). In situ OAE has been shown to enhance community calcification rates on a coral reef flat
(Albright et al., 2016). Meanwhile, pronounced CO» reductions (<100 patm) could inhibit
photosynthesis and reduce primary production (Barcelos e Ramos et al., 2007; Riebesell et al.,
1993) or delay bloom formation (Marin-Samper et al., 2024a), but may have varying impacts
depending on phytoplankton size and physiology (Hansen, 2002; Hansen et al., 2007),
confounding which species might be impacted most (Chrachri et al., 2018; Malerba et al., 2021).
Recent microcosm (Ferderer et al., 2022; Guo et al., 2024) and mesocosm (Ferderer et al., 2023;
Ramirez et al., 2025) experiments have demonstrated statistically significant changes in
phytoplankton community composition and succession following unequilibrated alkalinity
additions on timescales of days to weeks, with pronounced impacts on picoeukaryotes and mixed
outcomes for diatoms. The time and space scale of this initial perturbation will depend on the
rate/scale of alkalinity addition, timescales of gas exchange (weeks-months), and physical
dilution/subduction of alkalinity (location dependent; see Zhou et al., 2024). However, for a
single concentrated pulse of unequilibrated alkalinity, bulk productivity appears largely resilient
(Marin-Samper et al., 2024a) and the perturbation would likely dilute, equilibrate and attenuate
very quickly (Bach et al., 2019). This transient exposure to highly elevated pH is unlikely to

impair phytoplankton growth rates beyond a tipping point from which the community can safely
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recover once the system has equilibrated (Delicroix et al., 2024; Oberlander et al., 2024; Ramirez

et al., 2025).

During the equilibrated phase, alkalinity enhancement also leads to long-term, but smaller,
perturbations to the carbonate system that may alter phytoplankton community structure on
longer time scales. After the initial alkalinity enhancement, the CO; deficit in seawater is filled
by the invasion of CO» from the atmosphere, largely restoring the speciation of DIC on time
scales of several years (Gonzalez & Ilyina, 2016; He & Tyka, 2023; Zhou et al., 2024). However,
the combined effect of elevated alkalinity and DIC after equilibration will lead to a slight
increase in pH and moderate increase in CO3*" and HCOs relative to the unperturbed carbonate
chemistry (Bach et al., 2019; Ilyina et al., 2013). This new, equilibrated chemical state could
permanently increase calcification rates (Bach et al., 2015) and favor the growth and abundance
of calcifying organisms (Henderson et al., 2008; Riebesell et al., 2017). For example, the Black
Sea is a highly alkaline marginal sea and experiences remarkably large coccolithophore blooms
(Kopelevich et al., 2014) compared to otherwise similar lower alkalinity marginal seas (Sorokin,
2002). A shift toward calcifiers could alter the carbon sequestration efficiency, as the process of
calcification increases pCO; (Kwiatkowski et al., 2025), while the increased ballasting material
could potentially increase export efficiency. However, early work has shown no evidence of
changes in the stoichiometry, settling velocity or remineralization rates of sinking particles in an
equilibrated mesocosm (Suessle et al., 2025). Finally, a sustained pH change could alter nutrient
cycling through pH-dependencies on, for example, heterotrophic nutrient turnover (Taucher et
al., 2021) and iron solubility (Liu & Millero, 2002); however, the observed impact on food
quality (e.g. C:N; Ferderer et al., 2022; Paul et al., 2024), iron bio-availability (Gonzalez-Santana
et al., 2024) and bulk productivity (Marin-Samper et al., 2024b; Ramirez et al., 2025) so far

appears relatively low in response to equilibrated OAE.

3.2.2 Ecosystem impacts of associated mineral and trace metal contaminants

Dissolved chemicals derived from the specific source of alkalinity could have additional, and
much larger, ecosystem impacts than direct alkalinity addition, but depend on the source of

alkalinity selected (Bach et al., 2019; NASEM, 2022). At one end of the spectrum,
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electrochemically derived compounds (OH", NaOH) are the most expensive, but purest source of
alkalinity in that all associated chemicals are generally derived from the salt already in sea water
and largely biologically inert at the scales they would be added (Eisaman et al., 2023; NASEM,
2022). At the other end of the spectrum, relatively cheap industrial waste products may contain
high concentrations of trace metal contaminants (Chromium: Cr, Molybdenum: Mo, Nickel: Ni,
Lead: Pb) with largely unknown impacts on biology (Bach et al., 2019). In between, mineral
sources of alkalinity can contain high concentrations of biologically important nutrients (SiOs,
Fe) and/or alkaline earth metals (Ca?", Mg?" ) that may influence calcification (Bach et al.,
2019). Two of the most common mineral sources of alkalinity are naturally occurring silicates
such as olivine (Mg,Fe)2Si04) and industrially processed calcium carbonate derivatives such as

quicklime (CaO).

Chemical byproducts of olivine OAE could cause large shifts in phytoplankton productivity and
community structure. Olivine dissolves into silicic acid, magnesium and iron (Taylor et al.,
2016). Magnesium is already highly concentrated in the ocean relative to what would be added,
but may locally inhibit calcite (but not aragonite) production (Davis et al., 2000) at concentrated
source locations. Silicic acid and iron, however, are critical nutrients that respectively limit the
productivity of diatoms globally (Krause et al., 2019; Ragueneau et al., 2006) and all
phytoplankton in High Nutrient, Low Chlorophyll regions (Aumont & Bopp, 2006; Tagliabue et
al., 2017), and could thus have a much broader impact even once diluted beyond their source
locations. Modeling suggests that sequestering ~1 GtC yr! (equivalent to approximately 10% of
global CO; emissions in 2023) with olivine could triple the natural source of silicate (Beusen et
al., 2009) and double the natural source of iron (Mahowald et al., 2005), with the resulting
fertilization increasing global NPP by up to 40% and shifting community composition towards
diatoms (Hauck et al., 2016; Kwiatkowski et al., 2023). The resulting ecosystem effects are
broadly similar to those projected for iron fertilization strategies that cultivate microalgae,
including enhanced productivity and altered food web structure. Further fertilization over an
extended deployment (year-decades) will likely have diminishing additional ecosystem impacts

as other macronutrients become limiting.
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OAE using calcium-based minerals has fewer potential ecosystem impacts than using olivine.
Calcium-based minerals contain relatively few impurities and can essentially be considered a
source of only calcium ions (Ca?") and alkalinity. Global background calcium concentrations are
high, meaning the relative perturbation will be small, but could still theoretically accelerate
biological calcification (Stanley et al., 2005) and induce a shift toward coccolithophore
dominance. Compared to olivine-sourced alkalinity, which promotes the growth of silicifiers and
may inhibit calcification, a calcium-based mineral alkalinity source could favor a
coccolithophore over diatom dominated phytoplankton community (Bach et al., 2019).
However, recent cultured experiments using calcium-based and olivine minerals, respectively,
found little effect on coccolithophore physiology (Gately et al., 2023) and no competitive
advantage for diatoms relative to coccolithophores, even when directly competing (Hutchins et

al., 2023).

Finally, any mineral additive or industrial by-product is liable to contain biologically active trace
metals in high concentrations compared to the ocean (Hartmann et al., 2013). For example, in
addition to iron, olivine can contain very high concentrations of nickel (Hutchins et al., 2023;
Simkin & Smith, 1970), which can act as a nutrient or toxin depending on species and
concentration (Glass & Dupont, 2017; Guo et al., 2022). Nitrogen-fixing cyanobacteria are most
likely to benefit from elevated nickel (Dupont et al., 2010), while some species of diatoms (Xin
et al., 2024), mussels (Millward et al., 2012) and crabs (Blewett et al., 2015) may experience
toxic effects at high concentrations. However, there is little evidence of significant bio-
accumulation (Nieminen et al., 2007). Additional trace metals (e.g., Cr, Mo, Pb) found in
naturally occurring silicates (Beerling et al., 2018) and industrial by-products (Renforth, 2019)
may be more harmful or likely to bioaccumulate (Wilson et al., 2019) and should still be

assessed.

3.2.3 Impacts on marine food webs

The overall impact of OAE on food webs will likely hinge predominately on source-specific
shifts in community composition of primary producers and how these bottom-up drivers

propagate up the food-web (Mitra et al., 2014). However, direct impacts must also be considered,
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particularly at highly concentrated source sites. From a carbonate chemistry perspective,
extended exposure (months) to high pH (>9.5) during the initial transient OAE response phase
can adversely affect some fish species (Locke et al., 2009; Saha et al., 2002; Scott et al., 2005)
and benthic epifauna (Jones et al., 2025), although such sustained conditions are improbable
(Renforth & Henderson, 2017). Mesocosms of the subsequent, equilibrated phase have shown no
sustained adverse effects on zooplankton community structure, productivity or nutritional quality
(Sanchez et al., 2024), nor on various juvenile fish species (Goldenberg et al., 2024). From a
mineral additive perspective, oxidation of Fe(II) to Fe(IIl) from olivine could consume dissolved
oxygen at depth, but this could likely be mitigated by reasonable dispersal rates (Renforth &
Henderson, 2017; Schott & Berner, 1985). Elevated mineral particulate from the direct
deposition of alkaline source particles or the spontaneous precipitation of CaCOj3 induced by
those particles (Paul et al., 2024) could impair visual predators like fish (Eisner et al., 2005) and
seabirds (Baduini et al., 2001) or clog the mesh of filter feeding zooplankton (Guo et al., 2024).
However, high particulate concentrations are expected to attenuate on the order of days (Balch et
al., 2009). Finally, if naturally-sourced minerals dissolve slowly, they may become incorporated
into organic particles, potentially reducing the nutritional quality of food available to

zooplankton (Fakhraee et al., 2023).

3.3 Relative importance of marine ecosystem impacts across CDR approaches

It is not possible to rank the overall impact of a given intervention without assuming a normative
weight on individual impacts, many of which do not have an obvious qualitative connotation. For
instance, the creation of new biomass could be considered positive from an ocean productivity or
fisheries perspective but negative from an ecosystem disruption perspective. Both perspectives
are valid and likely to diverge between different interest groups. Instead of adjudicating those
differences, we assess the importance of each individual impact pathway across different marine
CDR interventions and report how well it is currently represented in models (Figure 2). Climate
interventions with more impact pathways with higher relative importance and/or worse model

representation (see Section 5; Figure 2 & 4) carry more high-risk uncertainty.
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Biomass-based CDR approaches can influence marine ecosystems through cultivation, growth,
leaching, transport and breakdown of new biomass. Nutrient impacts (Figure 2a) are largest for
methods that directly add macro- and micro-nutrients to the surface ocean, including microalgae
growth due to iron fertilization as well as some approaches for macroalgal cultivation (Aumont
& Bopp, 2006; Moore et al., 2001; Ustick et al., 2021). However, nutrient impacts (e.g., nutrient
robbing) may be mitigated for macroalgae cultivation if macronutrients (N, P) are added instead
of micronutrients (Fe) because this may not deplete the downstream preformed nitrate
concentration (Berger et al., 2023; Oschlies et al., 2010a). Terrestrial biomass storage at depth
avoids direct perturbation to surface nutrients, but nutrients released from biomass breakdown
can eventually upwell and impact surface-ocean environments, especially for well-ventilated
(typically oxic) placement sites. The creation of new biomass (Figure 2b) from macroalgae
cultivation in particular, and microalgal blooms to a lesser extent, produces physical habitat in
the photic zone and can shade deeper organisms (Gallo et al., 2025; Levin et al., 2023).
Dissolved organic matter (Figure 2¢) can impact ecosystems in complex ways, as food, a
nutrient, or an inhibitor; it is produced during the breakdown of essentially all biomass types, and
it can be released in particularly large quantities during the growth and senescence of macroalgae
and some other plankton (e.g., diatoms) (Krause-Jensen & Duarte, 2016; Perkins et al., 2022). As
new biomass is physically transported (Figure 2d), the risk of smothering benthic ecosystems is
highest for dense biomass that sinks efficiently and encounters seafloor animal communities
(Omand et al., 2020; van Nugteren et al., 2009; Zhu et al., 2024). Macroalgal biomass is also
particularly likely to transport passenger organisms (e.g. epibionts, viruses) during sinking and to
attract opportunistic scavengers, although this impact is minimized for anoxic storage sites,
where few exogenous organisms would survive (Figure 2¢). During breakdown (Figure 2¢), O>
consumption may be a particularly important impact for any biomass type in naturally oxic water
(Buesseler et al., 2024; Doney et al., 2024). Anaerobic respiration may occur within biomass
piles at oxic sites, but sulfide release to the environment will be most substantial in anoxic
environments (Hamukuaya et al., 1998; Middelburg et al., 2020; Schunck et al., 2013). Other
effects of respiration are more evenly distributed across pathways but will be more acute for
biomass types that degrade relatively quickly, releasing DIC and impacting downstream

carbonate chemistry.
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Figure 2. The relative importance and representation of perturbations (a-i) and impacts (i-v) for CDR on marine ecosystems. The
relative importance of each impact pathway to each CDR method is qualitatively described as high (red), medium (light red), low
(light blue), or not relevant (blue). Additional impacts associated with deployment, which may vary within a given intervention, are
discussed in Section 3.3. Relative importance represents an approximate, aggregate measure of the scale, uncertainty, and significance
of a given impact. The general ability of Earth system (ESM) and marine ecosystem models (MEM) to simulate each impact pathway
is summarized as a rough indication of inclusion across models used in prominent inter-comparison projects. MEMs are typically
forced with temperature and plankton (net primary productivity or biomass) outputs from ESMs, and occasionally pH and/or
photosynthetically active radiation (see Section 5.3). Model inclusion scores refer to 1) the ability to resolve changes in physics,
chemistry and plankton in ESMs, and 2) the response of higher trophic levels in MEMs to ESM forcing are considered inclusive of
corals and visual predators, in that they are the responsibility of the MEM. Perturbations can impact higher trophic levels directly
through their physiological sensitivity (resolved in MEMs) to physical/chemical changes (resolved in ESMs) or indirectly through
their predation response (resolved in MEMs) to physically/chemically driven changes in plankton (resolved in ESMs). Inclusion is
scored with two checks (V' V) if most direct and indirect pathways are reasonably well represented in most models, one check (V)
if only some direct or indirect pathways are reasonably well represented in some models, and a cross (x) for rare and/or insufficient
inclusion. If there is only a direct impact on higher trophic levels, ESMs are scored exclusively on their ability to resolve the relevant
physics/chemistry (e.g., g - iii). If there is only an indirect impact on higher trophic levels, ESMs must resolve the entire
physical/chemical and plankton response to receive a check (e.g. a - i). MEMs are not penalized if the ESM does not resolve
something that would otherwise be captured in the MEM forcing fields, meaning MEMs can receive checks even if the ESM does not
(e.g. g -1). If there is a direct and indirect impact on higher trophic levels, ESMs and MEMs can receive a single check if they present
a limited inclusion of either the direct or indirect impact pathway (e.g. f - i). These metrics are not intended to provide an exhaustive
or specific review of all model configurations, but rather an informed, high-order assessment of model capabilities and processes that

may need more development.
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While carbonate or electrochemically derived OAE should not substantively impact the creation,
transport, or breakdown of new biomass, the impacts of silicate-based OAE are considered
equivalent to microalgae fertilization (Figure 2a-¢) due to the large iron and silicate content of
mafic minerals (Taylor et al., 2016). Olivine contains roughly 1 mol of iron and 5 mol of silicate
per 20 mol of alkalinity, meaning the ~3 Pg of olivine required to abiotically sequester ~1 GtC
would add as much as 230 Tg of iron to the ocean (Hauck et al., 2016). Much of that iron would
be quickly scavenged onto particles in its colloidal form (Liu & Millero, 2002), but if only 0.1%
remains bioavailable, it would double the natural deposition of bioavailable iron from dust

(Mahowald et al., 2005), in addition to tripling the natural source of silicate (Beusen et al., 2009).

All interventions, both biotic and abiotic, that add DIC to the ocean could impact marine
ecosystems through shifts in the carbonate system on long-term (Figure 2f) and transient (Figure
2g) timescales. On long-term timescales (decades-centuries) an equivalent amount of CDR from
biotic interventions that primarily store carbon as DIC following the oxic respiration of created
biomass (micro- and macroalgae) could lead to larger carbonate shifts, albeit in the opposite
direction (acidification), than from abiotic (OAE) interventions which buffer DIC-driven shifts in
carbonate chemistry through the addition of alkalinity. However, to successfully sequester
carbon, shifts in carbonate chemistry driven by oxic respiration would need to occur deeper in
the water column, where they could be decoupled from marine ecosystems in the surface ocean.
On shorter, transient time scales (hours-days), these shifts are primarily relevant to abiotic,
alkalinity-based interventions that can drive a more rapid (seconds-minutes) and concentrated
shift in carbonate speciation than biotic interventions, which are levelized across the timescales
of biological productivity, remineralization and export (days-weeks). Still, the importance of
these transient impacts to abiotic marine CDR are considered low, as large perturbation to
carbonate chemistry should dilute and equilibrate before causing permanent biological harm
(Bach et al., 2019; Delacroix et al., 2024; Oberlander et al., 2025; Ramirez et al., 2025). The
impacts of bioactive contaminants (Figure 2h) are limited to minerally sourced alkalinity and
industrial by-products and vary based on source material. The impacts of elevated inorganic

particulate (Figure 21) are limited to solid-source OAE and vary based on grain size.
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Finally, different interventions will have different impacts associated with the mechanical and
practical constraints on how they are deployed. However, because these impact pathways are not
necessarily linked to the biogeochemical pathways through which carbon is captured or stored,
they could vary substantially within a given intervention (and thus are not included in Figure 2).
The potential impacts of different deployment mechanisms are discussed below. A full life cycle
analysis of how materials are sourced and transported is not considered here but is critical in the

cost-benefit assessment of any project.

For biotic methods, the largest direct practical impacts are related to the ship-based dispersal of
nutrients for microalgae fertilization or deposition of biomass. Increased ship traffic could have
wide ranging impacts related to the effects of ship noise on marine mammals (Erbe et al., 2019),
introduction of invasive species (Costa-Areglado et al., 2025) and/or chemical pollutants
(Kurniawan et al., 2022) in ballast water, increased risk of whale encounters including ship
strikes (Nisi et al., 2024), increased emissions (Deng & Mi, 2023), and potential for habitat
destruction during port development (Bulleri & Chapman, 2010). These impacts would likely be
larger for microalgae fertilization than biomass storage due to the breadth and remoteness of
siting locations, e.g., the Southern Ocean (Oschlies et al., 2010a) compared to the Black Sea
(Raven et al., 2024). Microalgae fertilization through artificial upwelling would require the
construction and ship-based mobilization of hundreds of thousands of 500+ m long pipes across
the open ocean (Koweek, 2022). Macroalgae cultivation is more likely to occur coastally,
obviating the need for a large shipping fleet, but could increase impacts associated with small
vessel traffic and increased coastal infrastructure in more ecologically sensitive coastal regions

(Campbell et al., 2019).

For abiotic methods, alkalinity can be added to the ocean in solid form via open-ocean ship-
based dispersal, coastal benthic deposition, or river liming, and in dissolved form through either
non-electrochemical reactor-based processes, such as accelerated weathering of limestone
(Renforth & Henderson, 2017) or electrochemical systems (Eisaman et al., 2023). The
deployment impacts of ship-based dispersal are analogous to biotic methods, but substantially
larger due the mass of material needed. For instance, while 1 tonne of iron could stimulate the

export of order 1,000 tonnes of carbon into the deep (<250 m) ocean (Buesseler et al., 2004), 1
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tonne of olivine, which has a molecular weight of ~140 g/mol and 4 mol of alkalinity/mol, could
sequester only 0.25 tonnes of carbon (ignoring the fertilizing contribution of Fe/Si). To evenly
disperse 1 Pg of olivine per year (~0.03 Pmol of alkalinity), enough to sequester about 3% of
global emissions, it would take approximately 100 dedicated tankers (Kohler et al., 2013).
Alternatively, river liming, which eventually sequesters carbon in seawater, has long been used
for ecosystem restoration in acidified freshwater systems, but can increase turbidity and induce
benthic smothering (Clair & Hindar, 2005). Similarly, coastal deposition of sediments has long
been used to reduce coastal erosion through beach nourishment, but is also known to degrade

beach and benthic habitats (Saengsupavanich et al., 2023).

On the other hand, dissolved sources of alkalinity could substantially increase coastal
infrastructure depending on the degree to which they are incorporated into existing coastal
outfalls. Specifically, electrochemically derived alkalinity can be produced by passing a saline
feedstock through an electrochemical reactor to produce either dissolved alkalinity (OH") or filter
out alkaline precipitates (NaOH, Mg(OH),, Ca(OH), ) (Eisaman et al., 2023). Depending on the
source of the feedstock (seawater, industrial or desalination byproduct), there could be a range of
impacts on the ecological communities. If the feedstock is sourced from seawater, rather than
existing desalination or industrial byproducts, additional seawater intakes can lead to the
entrainment, impingement and exclusion of marine organisms (Missimer & Maliva, 2018) and
further expose entrained organisms to large temperature and pH swings in the reactor. Similarly,
accelerated weathering of limestone requires pumping large amounts of seawater through an

acidified reactor (Rau & Caldeira, 1999).

4. SOLAR RADIATION MODIFICATION (SRM)

4.1 Stratospheric Aerosol Injection

Stratospheric aerosol injection (SAI) is a proposed intervention technique that would involve
injecting aerosols or their precursor gases into the stratosphere to reflect sunlight back into space,
thereby reducing the amount of solar radiation reaching the Earth's surface (Figure 1; Crutzen,

2006; Robock et al., 2009). Gaseous precursors would be released at high altitudes by aircraft,
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which would convert to particles forming a layer that would scatter and reflect sunlight (Richter
et al., 2022). In theory, SAI aims to mimic the cooling effect observed after large volcanic
eruptions (Sigl et al., 2015; Tilmes et al., 2015). For example, as a result of the sulfur-rich
eruption of Mount Pinatubo in 1991, global temperatures temporarily decreased by about 0.2-
0.5°C over the next one to two years (Canty et al., 2013; Soden et al., 2002). The duration for
which aerosols from SAI would persist in the stratosphere and cool temperatures depends on
several factors, including the specific aerosol composition, particle size, altitude of injection,
timing of injection, and meteorological conditions (Kravitz & MacMartin, 2020). Aerosols
would remain suspended in the stratosphere for a few years, necessitating continuous

replenishment (Smith, 2020).

SAI deployed at scale would result in a reduction in global mean temperatures, and with it a
reduction in many temperature-associated ecological and societal impacts (Tye et al., 2022). For
a wide variety of physical climate effects, a world with high greenhouse gases and SAI would
have fewer impacts than a world with high greenhouse gases alone (Irvine et al., 2016; Visioni et
al., 2021). However, SAI will likely result in uneven changes in regional climate or precipitation
patterns (Jiang et al., 2024), a delay in the recovery of polar stratospheric ozone (Tilmes et al.,
2021), and potential changes in marine and terrestrial ecosystem structure (Zarnetske et al.,
2021). The complex interactions between aerosols, atmospheric chemistry, and climate are not
fully understood (Moch et al., 2023). Furthermore, abrupt termination of SAI, due to technical,
political, or economic reasons, could result in rapid and potentially severe temperature increases,
known as “termination shock™ (Jones et al., 2013). The sudden shift in climate conditions, either
from termination or implementation, could have detrimental consequences for ecosystems and

societies (Hueholt et al., 2024; Parker & Irvine, 2018; Trisos et al., 2018).

4.2 Marine Cloud Brightening

Marine cloud brightening (MCB), like SAIL aims to cool the climate by increasing the reflection
of sunlight to space (Figure 1). However, instead of injecting aerosols into the upper atmosphere,
MCB proposals envision pumping sea water through specially designed sprayer systems to

generate a fine mist of sea salt aerosol particles. These particles would reflect sunlight directly
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and seed cloud droplets to brighten low-lying marine clouds and potentially extend their
coverage as well (Alterskjer et al., 2013; Latham, 1990; Latham et al., 2012). The addition of
aerosol particles under the right conditions would quickly brighten clouds by increasing the
number of cloud droplets that form and decreasing their average size; for the same amount of
liquid water within a cloud, this would increase the effective surface area available to reflect
sunlight (Twomey, 1974, 1977). This “instantaneous” microphysical cloud brightening would
then be either compounded or diminished by subsequent macrophysical cloud adjustments. As
clouds with smaller droplets are less efficient at forming precipitation, acrosol-induced drizzle
suppression can extend the lifetime of clouds or increase their areal coverage and liquid water
content, enhancing cooling beyond the Twomey effect (Albrecht, 1989; Yuan et al., 2023; Chen
et al., 2024). However, smaller droplets are more easily evaporated at cloud top, driving
enhanced turbulent mixing of hot, dry air into the clouds, dissipating them and thus counteracting

the Twomey effect (Ackerman et al., 2004; Toll et al., 2019; Glassmeier et al., 2021).

The effect of international shipping on clouds is considered to be the best present-day analogue
to a hypothetical MCB deployment (Christensen et al., 2022; Robock et al., 2013). Ship tracks,
curvilinear cloud perturbations that can be traced back to pollution from smokestacks of
individual ships, were first identified in the scientific literature in the mid-1960s and their
implication for the possibility of deliberately cooling the Earth was immediately noted (Conover,
1966). Regional-scale cloud brightening has been observed within major shipping corridors,
providing compelling evidence that MCB could be effective at producing a cooling effect in at
least some conditions (Diamond et al., 2020). Cloud changes following stringent regulations in
ships' sulfur pollution implemented in 2020 (Diamond 2023; Watson-Parris et al., 2022) have
been investigated as a contributing factor to accelerated warming in the early 2020s (Gettelman
et al., 2024; Jordan & Henry, 2024; Quaglia & Visioni, 2024), in what could be considered an

unintentional trial of reverse MCB (Yuan et al., 2024).

The overall efficacy of MCB is uncertain, however, due to the aforementioned cloud adjustment
mechanisms that reduce cloudiness. Ship track studies have even shown net darkening in a
substantial minority of tracks due to the loss of liquid water (Chen et al., 2012; Coakley &
Walsh, 2002). The strength and even direction of MCB forcing can therefore be sensitive to
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assumptions about the magnitude of sea salt aerosol being injected (Hoffmann & Feingold, 2021;
Wood, 2021) and background meteorology (Zhang & Feingold, 2023). Unlike SAI, the forcing
from MCB would be spatially heterogeneous, as the most susceptible clouds only exist in certain
locations. This heterogeneous forcing pattern opens a number of questions and concerns about
local effects where the seeding would take place, and remote effects from changes in oceanic and
atmospheric circulation patterns (Hill & Ming, 2012; Jones et al., 2009; Stjern et al., 2018).
Balancing the needs for large enough spatial coverage of seeding to produce a desired magnitude
of cooling, the existence of susceptible clouds in target seeding locations, and minimization of
remote effects has proved particularly tricky for developing plausible deployment strategies in
global climate models (Haywood et al., 2023; Hirasawa et al., 2023; Wan et al., 2024). These
issues, including how they would affect marine ecosystems, have recently been highlighted as

priority research areas for assessing the feasibility of MCB (Diamond et al., 2022).

4.3 Physical & biogeochemical impacts of SRM in marine systems

Despite ongoing assessments of SAI’s feasibility and impact on the physical climate system,
insights as to its effects on the marine carbon cycle and net primary productivity are limited. To
date, Earth system models are the primary tool utilized to investigate how implementing SAI
could impact the global net carbon sink in both terrestrial and marine environments (Kravitz et
al., 2013; Tjiputra et al., 2016; Yang et al., 2021). Cooling caused by SAI implementation
increases COz solubility in seawater, leading to a strengthened global carbon uptake (Cao, 2018;
Cao & Jiang, 2017; Plazzotta et al., 2019; Tjiputra et al., 2016; Zhao et al., 2024). Using
different simulations, Tjiputra et al. (2016) observed that SAI enhances carbon absorption by the
ocean relative to reference scenarios (RCP4.5 and RCP8.5), except in the Arctic due to increased
sea ice recovery. This study also reported that SAI can boost the biological pump in certain
regions, increasing carbon transfer from the surface to depth, and maintaining the strength of the
meridional overturning circulation. Thus, SAI may aid in lowering atmospheric CO> levels,
albeit with a significant drawback of increased acidification in deeper waters (Tjiputra et al.,
2016). While SAI is also expected to limit the reduction in global ocean oxygen content caused
by a warmer climate (Cao, 2018), it will inevitably alter ocean circulation and biological

processes which could impact oxygen distribution at regional scales (Keller et al., 2014), with
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1038  potential implications on species compositions, migration patterns, and habitat availability

1039  (Cheung et al., 2013).

1040

1041  Theoretically, MCB could directly decrease NPP by exacerbating light and/or temperature

1042  limitations on growth or indirectly increase NPP by relieving nutrient limitation from warming-
1043  driven stratification. Using a one-dimensional water column model to look at the effects of

1044  shading alone on phytoplankton productivity, Hardman-Mountford et al. (2013) found that

1045  shading redistributed productivity vertically but did not change the integrated NPP. Partanen et
1046  al. (2016) assessed biogeochemical changes in an ESM of intermediate complexity (three-

1047  dimensional ocean circulation model with a simplified one-layer atmosphere) with MCB

1048  radiative forcing taken from an atmospheric circulation model (Partanen et al., 2012) and found
1049 that cooling and shading from MCB slightly decreased global ocean NPP as compared to a

1050 moderate unabated warming scenario. This net reduction in NPP was primarily caused by a

1051  decrease in temperature-dependent biological growth rates, with a smaller contribution from
1052  increased light limitation, and was partially offset by an increase in nutrient availability from
1053  weaker stratification. Temperature and light effects were largely confined to the forcing locations
1054  but NPP changes were more spatially heterogeneous downstream of the forcing locations due to
1055  changes in nutrient transport. Lauvset et al. (2017) compared SAI and MCB implementations in
1056  a global climate model (with coupled ocean-atmosphere circulations) and found that both

1057  methods limited global declines in ocean NPP as compared to unabated warming but are less
1058 effective than mitigation, in part because of their reduction in downwelling sunlight. The strong
1059  correspondence between forcing location and environmental and biogeochemical responses seen
1060  in the more idealized modeling framework of Partanen et al. (2016) is not found in the fully
1061  coupled model results of Lauvset et al. (2017), highlighting the importance of understanding how
1062  intervention-driven ocean-atmosphere circulation changes modulate ecosystem responses

1063  compared to local temperature and radiation effects alone.

1064

1065 4.4 Marine ecosystem impacts of SRM

1066

1067  Importantly, despite alleviating temperature increases, SRM would not address the ongoing

1068  process of ocean acidification, which poses a significant threat to calcifying organisms globally,
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such as coral reefs. One metric associated with the impacts of acidification on calcifying
organisms is the aragonite saturation state (€2 arag). 2 arag 1S @ measure of how likely calcium
carbonate in the form of aragonite is to precipitate or dissolve in seawater (Goldsmith et al.,

2019). The saturation state of carbonate minerals is given by:

_[€a*] - [€0*]
e

Q

where [Ca?" ] and [COs? ] are the calcium and carbonate ion concentrations, and Ksp is the
apparent solubility product (Jiang et al., 2015). For values of Q arag > 1, calcium carbonate
undergoes precipitation. Before the industrial revolution, almost all shallow water reefs were
surrounded by waters with high saturation states (€ aag > 3.3). However, the spatial extent of
reef suitable habitat meeting this threshold has reduced over time and is expected to reduce
significantly in the future (Figure 3a; Hoegh-Guldberg et al., 2007; Kleypas et al., 1999).
Kwiatkowski et al. (2015) showed that SAI implementation under RCP 4.5 resulted in lower
values of tropical Q arag When compared with RCP 2.6 and RCP 4.5 due to the greater solubility
of CO» in the cooler oceans, which is also true for recent SAI simulations (Richter et al., 2022;
Figure 3b). Compared to the no intervention future, the Q arag = 3.3 saturation zone is smaller
under intervention, with fewer reefs within the region bounded by the Q armg = 3.3 contour
(Figure 3b). The benefits of SRM relative to RCP 2.6 and 4.5 scenarios also diminish as the
sensitivity of bleaching threshold to € arg increases. Therefore, an important area of research
would be to understand the synergy between temperature and acidification impacts under SAI to

avoid inadvertent exacerbation of risks to coral reefs.
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Figure 3 a) Mean of aragonite saturation state (€ arag) at the ocean surface over the period 2015-
24 under future climate scenario SSP2-4.5. The black lines show the boundaries of existing coral
reefs and the blue contour line represents Q ame = 3.3 contour, the historical € value for healthy
shallow water coral reefs. b) Mean of the anomaly of Q arg between the intervention (SAI) and
no intervention (SSP2-4.5) scenarios over the last decade of SAI deployment in the model
simulations (2060-69). The white contour lines represent Q amg = 3.3, with the SSP2-4.5 (dashed
white line) covering relatively more reefs than SAI (solid white line). SAI results in an
anomalous decrease in surface ocean aragonite nearly everywhere, relative to a simulation with

rising atmospheric COz and no intervention.
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The potential of MCB to reduce the toll of heat stress on coral reefs has been of particular
interest (Latham et al., 2013, 2014). Condie et al. (2021) modeled MCB over the Great Barrier
Reef in northeastern Australia as a reduction in degree heating weeks using a coral reef meta-
community model. They found that while MCB was the single most effective intervention of
those tested specifically for temperature reduction, its benefits were limited unless paired with
other measures like increasing control of coral predators and introducing thermally tolerant coral
species. Simulations pairing MCB with the introduction of thermally tolerant corals did show
benefits, but these were limited by a marked increase in predation by crown-of-thorns starfish
unless targeted control measures were also put in place, highlighting the complexities of
ecosystem responses to intervention even in relatively simple model arrangements. As bleaching
is influenced by both heat and radiation (Falkowski et al., 1998; Hoegh-Guldberg, 1999; Saito et
al., 2008; Tagliabue et al., 2021), the potential for additional benefits of MCB in terms of

shading the surface and shifting the distributions of direct radiation deserves further study.

As of publication, MCB has not yet been tested extensively in the field, though there have been
small-scale experiments. For example, in Australia urgent climate protection efforts are currently
being tested and implemented on the Great Barrier Reef, as roughly half of the coral cover has
disappeared, predominantly due to bleaching in the last few decades (Dietzel et al., 2020;
Sovacool et al., 2023). Field testing for MCB and artificial shading (i.e., fogging) have been
considered (Hernandez-Jaramillo et al., 2023, 2024), along with a portfolio of climate protection
pathways that include nature-based ecosystem restoration as part of the Reef Restoration and
Adaptation Program (RRAP) launched in 2018 by the Australian Government. Fogging efforts,
designed to mimic the effects of sea fog, are more localized in time and space than MCB and
could be deployed much sooner. However, fogging lacks the capability to reduce temperatures
over broader regional or temporal scales (Sovacool et al., 2023), and is instead designed for rapid

deployment to individual reefs before and during marine heat waves.

The influence of SAI or MCB on food webs and fisheries is unknown, since no studies to date
have quantified potential impacts. However, given observed impacts of climate change on
marine ecosystems, it is likely that if either SRM strategy were implemented, the distribution and

biodiversity of marine ecosystems would shift on multiple spatiotemporal scales as a result of
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reduced temperatures, although at what rate and in which direction would vary regionally and be
dependent on the deployment strategy. Previous studies have demonstrated that marine species
are sensitive to temperature changes and larger pelagic organisms may migrate to different areas
in search of more suitable habitat, which would then alter local fishing patterns and catches (e.g.,
Cheung et al., 2013; Duffy et al., 2016; Kleisner et al., 2016; Pinsky et al., 2021; Poloczanska et
al., 2013; Ramirez et al. 2022). Alterations in diurnal and seasonal solar radiation from an
intervention further warrant consideration, as they may disrupt species with life-history traits
closely tied to light-driven diel or seasonal cycles. However, the geographical distribution of
marine life is not only constrained by temperature. If certain habitats experience reduced nutrient
availability as a result of changes to currents and circulation patterns under SRM, it could further
affect the community composition and abundance of species that rely on specific feeding
grounds. SRM would also result in a decrease in light availability which could impair visual

predators by reducing their hunting efficiency and disrupting light-dependent reproductive cues.

4.5 Relative importance of marine ecosystem impacts across SRM approaches

Because the impacts of SRM on the marine environment remain woefully understudied,
identifying, let alone quantifying, potential effects on marine ecosystems is inherently
challenging. Nevertheless, existing literature, combined with expert judgment, was used to
identify potential ecosystem impacts of SRM, assess their relative relevance to SAI and MCB,

and evaluate their current representation in models (Figure 4).

The importance of temperature- and radiation-driven impacts on marine ecosystems varies by
intervention strategy and spatial scale. SAI induces global cooling and results in modest, diffuse
reductions in solar input making its ecological relevance high at the global scale but relatively
low locally (Figure 4a—c; Kravitz et al., 2012). These modest changes are expected to have only
moderate effects on NPP and are unlikely to cause substantial ecological disruption. In contrast,
MCB produces more spatially heterogeneous effects due to localized deployment and variable
atmospheric transport, leading to greater ecological relevance at the regional scale. Local

reductions in downwelling solar radiation from MCB could be on the order of 10% (Figure 4b),
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potentially leading to stronger impacts on net primary productivity and ecosystem structure in

targeted regions.
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Figure 4. The relative importance and representation of perturbations (a-g) and impacts (i-iii) for SRM on marine ecosystems. The
relative importance of each impact pathway to each SRM method is qualitatively described as high (red), medium (light red), low
(light blue), or not relevant (blue). Additional impacts which remain too uncertain to assess are discussed in Section 4.5. Relative
importance represents an approximate, aggregate measure of the scale, uncertainty, and significance of a given impact. The general
ability of Earth system (ESM) and marine ecosystem models (MEM) to simulate each impact pathway is summarized as a rough
indication of inclusion across models used in prominent inter-comparison projects. MEMs are typically forced with temperature and
plankton (net primary productivity or biomass) outputs from ESMs, and occasionally pH, photosynthetically active radiation (PAR)
and/or other output (see Section 5.3). Model inclusion scores refer to 1) the ability to resolve changes in physics, chemistry and
plankton in ESMs, and 2) the response of higher trophic levels to ESM forcing fields in MEMs. Higher trophic levels are considered
inclusive of corals and visual predators, in that they are the responsibility of the MEM. Perturbations can impact higher trophic levels
directly through their physiological sensitivity (resolved in MEM) to physical/chemical changes (resolved in ESM) or indirectly
through their predation response (resolved in MEM) to physically/chemically driven changes in plankton (resolved in ESM). Inclusion

is scored with two checks (v'V) if most direct and indirect pathways are reasonably well represented in most models, one check

(V) if only some direct or indirect pathways are reasonably well represented in some models, and a cross (x) for rare and/or
insufficient inclusion. If there is only a direct impact on higher trophic levels, ESMs are scored exclusively on their ability to resolve
entire physical/chemical and plankton response to receive a check (e.g. d - i). MEMs are not penalized if the ESM does not resolve
something that would otherwise be captured in the MEM forcing fields, meaning MEMs can receive checks even if the ESM does not.
If there is a direct and indirect impact on higher trophic levels, ESMs and MEMs can receive a single check if they present a limited
inclusion of either the direct or indirect impact pathway (e.g. ¢ - i). These metrics are not intended to provide an exhaustive or specific
review of all model configurations, but rather an informed, high-order assessment of model capabilities and processes that may need

more development.
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These reductions may also disrupt the behavior of visual predators by impairing their hunting
efficiency. Although small relative to the natural diel cycle, the magnitude of local radiative
changes required for MCB to achieve a meaningful global effect, given its limited deployment
area, could be an order of magnitude greater than those of SAI (Figure 4d), with implications for
seasonal productivity and broader ecological responses (Partanen et al., 2016; Lauvset et al.,

2017).

Potential alterations in ocean circulation patterns (Figure 4¢), and subsequent shifts in heat and
nutrient distribution, are highly relevant to assessing the impacts of MCB on marine ecosystems.
As MCB may produce uneven results regionally, changes in circulation may amplify or
redistribute the intended cooling effects, introducing additional uncertainty in ecosystem
responses. Alternatively, SAI induces more spatially uniform cooling than MCB, which may be
less likely to result in major disruptions in ocean circulation patterns. Nevertheless, atmospheric
and oceanic circulation changes are tightly coupled with large-scale and regional-scale impacts
(Barreiro et al., 2008; Povea-Pérez et al., 2024). The effects of SAI and MCB on ocean
circulation are highly uncertain and quantification has only been attempted by a handful of
studies (e.g., Fasullo & Richter, 2023; Goddard et al., 2022). Based on current understanding and
existing gaps in knowledge, relative importance scores of high for MCB and medium for SAI
were assigned due to the potential for impacts to ocean circulation through broader climate

feedbacks.

The potential deployment of SAI and MCB would each involve specific infrastructure and
machinery, which may result in varying associated impacts to the marine environment. For SAI,
a pathway for deployment would involve substantial investment in new high-altitude aircratft,
with potentially thousands of missions annually from global bases to maintain target radiative
forcing (Smith & Wagner, 2018). This operational scale increases the potential for interactions
with the surface ocean chemistry and such impacts have not been studied. The long-term
deployment of SAI may lead to sulfate aerosol deposition in surface waters, particularly in mid-
latitudes due to stratospheric circulation (Kravitz et al., 2009; Visioni et al., 2020). Although
sulfate deposition is not a driver of global changes in ocean acidification (Doney et al., 2007,

Hunter et al., 2011), there might be a small likelihood of local impacts to ocean chemistry that
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could be worth exploring further (Figure 4f). For MCB, oceangoing hardware is central to the
feasibility and risk profile, influencing everything from effectiveness to the environmental

footprint (Figure 4g).

Certain additional impacts are not included in Figure 4, as current understanding is too limited to
allow for a non-speculative assessment. For instance, uncertainties remain around the deposition
and redistribution of sea salt from MCB deployment. While localized evaporation during
seawater extraction may slightly enhance fluxes in some regions and lead to concentrated salt
deposition elsewhere, the overall impact on ocean salinity is likely negligible, particularly given
the oceanic origin of the salt. Even under industrial-scale deployment scenarios of order 100 Tg
annually (Rasch et al., 2024), the expected relative salinity perturbation would be well under
0.1%. While the implementation of SAI and MCB would be characterized by significant
uncertainty, it is almost certain to introduce impacts from increased aircraft and vessel traffic,
including noise, pollution, and, depending on fuel source, elevated emissions of greenhouse

gases and particulates that may impact marine ecosystems, especially sensitive pelagic species.

5. CURRENT LIMITATIONS IN MODELING MARINE ECOSYSTEM IMPACTS

Both global and regional scale modeling techniques allow us to assess the potential impacts of
future climate scenarios and climate intervention on marine ecosystems, and to inform regional
and global climate policy (Blanchard & Novaglio, 2024; IPCC, 2023). Marine ecosystem impact
assessments are accomplished by simulating the physical and biogeochemical ocean state
(including plankton productivity) using a global or regional ocean model, then using these
simulation results to drive marine ecosystem models, which simulate higher trophic levels not
resolved in the ocean models (Blanchard et al., 2024; Ortega-Cisneros et al., 2025; Stock et al.,
2011; Tittensor et al., 2018). Marine ecosystem models are diverse in their intended purpose and
complexity, and simulate ecosystem processes like growth, reproduction, competition, and
predator-prey interactions, giving rise to emergent properties such as species distributions, food
webs, fisheries production, and biodiversity (Heneghan et al., 2021; Murphy et al., 2025;
Steenbeek et al., 2021). Because ecosystems depend heavily on temperature and food

availability, the details of how well these drivers are represented, or if key biogeochemical or
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plankton dynamics are represented at all in the driver simulations, is critical for assessing model

limitations and uncertainties.

5.1 Earth system model limitations

Earth system models (ESMs), global climate models that simulate and couple the atmosphere,
ocean, land, cryosphere, and include ocean and land biogeochemistry, are used for global and
regional impact assessments of climate change and climate intervention on marine ecosystems
(Schoeman et al., 2023; Stock et al., 2011). ESMs were designed to capture climate dynamics
and the carbon cycle, and as such have a relatively simplistic representation of lower trophic
level marine food webs, focused on their role in biogeochemical cycling (Séférian et al., 2020;
Stock et al. 2011). Substantial ocean biogeochemical model development is needed to capture
many key processes that might be affected by global and regional SRM and marine CDR climate

interventions (Figures 2 and 4).

Despite the goal of ESMs to capture carbon cycling processes in the ocean, there are wide
variations across the ESMs in the representation of lower trophic level processes that drive
ecosystems, such as NPP (Tagliabue et al., 2021) and carbon export production (Henson et al.,
2022; Laufkotter et al., 2016; Planchat et al., 2023). This uncertainty is driven by both limitations
in historical observations, which are more difficult in the ocean than on land, and major
uncertainties in key lower trophic level processes. For example, both globally integrated
historical levels of NPP and the future trends are highly uncertain across the ESMs contributing
to CMIP, with no reduction in uncertainty from CMIP5 to CMIP6 (Kwiatkowski et al., 2020).
One driver of NPP projection uncertainty is the parameterization of nitrogen fixation by
diazotroph phytoplankton (Bopp et al., 2022), which constrains nutrient availability in
“tropicalized,” high recycling biomes that are expected to expand under global warming.
Similarly, another is the parameterization of temperature-dependent remineralization of organic
matter in the mesopelagic (midwater) zone and how this recycling contributes to NPP in a
warming climate (Rodgers et al., 2024). The typically assumed fixed C:N:P stoichiometry of
phytoplankton in ESMs contributes additional uncertainty to projections of NPP, carbon export
and zooplankton production in an increasingly stratified and nutrient-limited ocean

(Kwiatkowski et al., 2019; Kwon et al., 2022; Teng et al., 2014). Another driver is the large
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variation in representation of zooplankton and their grazing, which drives uncertainty in higher
trophic level productivity, and also carbon recycling and export both in the present and future

(Clerc et al., 2024; Petrik et al., 2022; Rohr et al., 2023).

Besides issues of overly simple representations of phytoplankton and zooplankton, ocean
biogeochemical models in general, and ESMs in particular due to simplifications made for
computational efficiency, have further challenges in representing key ecological processes
relevant for both SRM and CDR. These include the carbonate chemistry dependencies of
plankton growth and calcification (Seifert et al., 2025), the interaction of zooplankton with
anthropogenic particles (Fakhraee et al., 2023), and limited or absent representation of calcifying
plankton (Planchat et al., 2023) and coral reefs (Bouttes et al., 2024; Mongin et al., 2021), which
can be negatively impacted by acidification but could benefit from elevated alkalinity thereby
highlighting the presence of competing drivers under future scenarios (Bach et al., 2015;
Krumhardt et al., 2017, 2019; Kwiatkowski et al., 2025). Magnesium/calcium ratios affected by
minerally sourced OAE are also rarely included in BGC models (but see Gangstg et al., 2008),
yet may shift calcifier preference toward aragonite over calcite, as observed through geologic
time (Bach et al., 2019; Davis et al., 2000; Ries, 2010). Other poorly represented processes
relevant for CDR include benthic ecosystems, macroalgae and associated “passenger” organisms,
microbial responses, and the impacts of trace metals and dissolved organic compounds. On a
global scale, ESMs have neglected feedbacks from climate interventions on atmospheric CO:
concentrations and terrestrial carbon uptake. The need for emissions-driven simulations is
increasingly recognized (Sanderson et al., 2024), which capture these feedbacks and yield more
realistic estimates of intervention outcomes for both marine and terrestrial ecosystems (Oschlies,

2009; Palmiéri & Yool, 2024; Lenton et al., 2019).

Another challenge in leveraging global ocean future projections for marine ecosystem impacts is
the coarse resolution of global models. The bulk of marine ecosystem productivity is in coastal
regions (Watson & Tidd, 2018). Most fish catch occurs over continental shelves where
productivity is high and distance to shore is shorter, and thus the fuel needed to fish is
minimized. However, the coarse resolution of ESMs (25-100km) means that these coastal

regions of high productivity are poorly represented in terms of key physical processes like
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upwelling and river dynamics (Liu et al., 2021; Small et al., 2015), both providers of nutrients
driving high coastal production. Despite these challenges, ESM development has been moving
toward a focus on better marine ecosystem representation, with more flexibility on lower trophic
level processes (Krumhardt et al., 2024; Long et al., 2021; Petrik et al., 2022; Stock et al., 2011).
Current efforts in regional downscaling of future climate projections (Jacox et al., 2023; Pozo
Buil et al., 2021) will allow for making climate projections usable for fisheries management and
decision making, but are also hampered by computational demands and lack of observational

data.

5.2 Regional ocean modeling limitations

While the applications of regional models for impact assessments and coastal management have
expanded over time (Fennel et al., 2022), including in the context of climate intervention
(Anschiitz et al., 2025; Butenschon et al., 2021; Ou et al., 2025), several limitations still hinder
their broad adoption for climate intervention applications (Buesseler et al., 2024; Ho et al.,
2023). Many challenges are shared with global models, such as simplified representations of
biogeochemical cycles and ecological processes as well as difficulties in bridging to higher
trophic levels. Regional biogeochemical models, however, offer the advantage of resolving finer
spatial scales than global models, down to kilometers or even hundreds of meters. These scales
are needed to capture processes relevant to CDR, such as rapid subduction of surface waters by
submesoscale currents (Wang et al., 2025). Nonetheless, their accurate representation remains
challenging both theoretically (McWilliams, 2016) and because of the high computation costs,

which can often rival those of global applications.

While regional models are able to capture local processes, activities such as monitoring,
reporting, and verification (MRV) require connecting regional results to global scales, for
example to address long-term durability of CDR and downstream biogeochemical impacts
(Buesseler et al., 2024; Doney et al., 2024). While “downscaling” of large-scale simulations to
regional models is the norm, the reverse, “upscaling” of regional model results to basin and
global scales, e.g., by two-way coupling, has been used for physical processes (e.g., Combes &

Matano, 2014; Schwarzkopf et al., 2019) but remains underexplored and challenging for
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biogeochemical processes (Harvey, 2000). Finally, advancement and validation of regional
models for climate interventions is hindered by a lack of dedicated field studies as well as long-
term time series data. However, a number of recent projects targeting regional interventions,
such as the Reef Restoration and Adaptation Program in Australia, are designed to integrate field

and modeling components, which could help improve these limitations.

5.3 Global Marine Ecosystem Model (MEM) limitations

Extensive development and intercomparison of global MEMs have provided critical insights into
the effects of climate change and fishing on higher trophic levels, while also revealing important
structural limitations, many of which are documented in Figures 2 and 4. No fewer than nine
global marine ecosystem models have been developed to quantify and project the impacts of
climate change and fishing in the open ocean (Tittensor et al., 2018, 2021). Their global scope
means these models generally represent marine organisms by functional traits such as body size
(Heneghan et al., 2021) or as distinct functional groups (Christensen et al., 2015), with little
species or taxonomic resolution (but see Cheung et al., 2008 and Coll et al., 2020). Thus, these
models are best-suited for global-scale assessment of climate impacts on higher trophic levels,
but not for regional-scale or local studies where effects on individual species are of interest to
fisheries managers and other regional stakeholders (Coll et al., 2024; Ortega-Cisneros et al.,

2022).

Even in the open ocean, to our knowledge only five global models (DBEM, Cheung et al., 2008;
DBPM, Blanchard et al., 2012; EcoOcean, Coll et al., 2020; FEISTY, Petrik et al., 2019;
APECOSM, Maury, 2010) disaggregate marine biomass based on ocean depth (epipelagic versus
mesopelagic; Maury et al., 2010) or pelagic and benthic zones (Blanchard et al., 2012; Cheung et
al., 2013; Petrik et al., 2019), or across multiple depth zones (Coll et al., 2020; van Denderen et
al., 2021). At the same time, the majority of global models aggregate consumer biomass across
ocean layers based on body size or trophic level (Heneghan et al., 2021). This limits the ability of
these models to provide information on CDR impacts on benthic communities present on the

continental shelf, or mesopelagic and bathypelagic organisms in deeper waters.
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Another shortcoming is that not all global MEMs explicitly consider species interactions (which
account for carbon propagation through marine food webs) and species movement (which
accounts for organic carbon transport). Even when ESMs resolve depth and functional
differences in plankton biomass or NPP, this information is often lost to the MEM when forced
(Figure 2a-iii, b-ii, g-iii; Figure 4b-ii). This, in turn, limits the ability of MEMs to
mechanistically approximate where carbon may be absorbed, transported, and re-released by the
living ecosystem under changing climates (Atwood et al., 2015; Roman & McCarthy, 2010).
When they do, as in the case of EcoOcean, there is high uncertainty associated with dispersal
capacity of organisms and how they adjust this dispersal to suitable or unsuitable environmental
conditions (Coll et al., 2020). In coupled applications, MEMs are commonly forced by ESM
output variables such as temperature and primary production (or plankton biomass), and
occasionally also pH, light and other variables. Accordingly, ESM perturbations can affect
MEMs either directly (through dependencies on physical or chemical conditions) or indirectly,
by altering lower trophic productivity that propagates up through the food web. As a result, the
ability of MEMs to simulate ecosystem responses is constrained not only by internal processes,
but also by how accurately ESMs represent the physical and biogeochemical conditions that

shape direct and indirect ecological pathways.

Finally, across the current suite of global marine ecosystem models, ESM temperature and lower
trophic level variables such as primary production, plankton biomass and carbon export
overwhelmingly drive projected climate change impacts on higher trophic level biomass
(Heneghan et al., 2021), even for the few global marine models that include drivers beyond
temperature and lower trophic level forcings, such as pH, oxygen or sea ice concentrations
(Tittensor et al., 2021). Therefore, although all of these models can estimate the effects of
temperature changes from SRM or other intervention strategies on fish biomass, most are unable
to project any direct impacts of ocean acidification, deoxygenation or changes in nutrient

concentrations on marine animal biomass.

5.4 Regional MEM limitations
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Several ecosystem modeling frameworks exist to conduct simulations of climate change impacts
on marine ecosystems at a regional scale (reviewed in Tittensor et al., 2018, Ortega-Cisneros et
al., 2025). These models are built to answer questions relevant to the specific regions for which
they are developed and have mostly focused on the impacts of fishing (Stock et al., 2023; Coll et
al., 2024). Regional models have higher taxonomic resolution than global models, with several
groups modeled as individual species or pooled into functional groups with a few species of
similar life history and ecological characteristics (Kaplan et al., 2019; Koehn et al., 2016). Most
regional MEMs represent benthic communities (focusing on target species, e.g., Eddy et al.,
2017), but not often the ecosystem processes associated with benthic carbon dynamics. These
models could thus be used for regional-scale assessments of climate intervention impacts on
functional groups relevant to fisheries management and decision-making, but may need

refinement to model impacts on groups such as benthic or zooplankton communities.

As for the global MEMs, the most common drivers used in regional climate applications are sea
temperature, NPP, and plankton biomass (Ortega-Cisneros et al., 2025). In addition, regional
MEMs have been extensively used to test impacts of ocean acidification (Marshall et al., 2017;
Olsen et al., 2018; Zunino et al., 2021), deoxygenation (Morell et al., 2023; de Mutsert et al.,
2016; Niiranen et al., 2013), and nutrient-driven changes (Bauer et al., 2018; Piroddi et al., 2021)
on marine ecosystems and the services they provide. Hence, these models could be applied to
represent the pathways by which different interventions affect marine organisms at the scale of
the local ecosystem. There is limited capacity to generalize or extrapolate findings more broadly
or to other regions. Regional MEMs often rely on assumptions or external data for processes
occurring outside the region of interest, which can introduce inaccuracies and may not capture
broader-scale interactions (Birkhofer et al., 2015). Therefore, for the purposes of evaluating
impacts of climate intervention methods, especially CDR, interpreting regional MEM output

requires familiarity with the strengths and limits of the projections.

6. ENGAGEMENT AND COLLABORATION ENABLE BETTER CLIMATE
INTERVENTION RESEARCH
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Results from climate models can provide information that is pertinent to a wide range of
audiences, including policymakers, managers, and the general public. A substantial challenge in
determining the ecosystem impacts of climate intervention is the discontinuity that exists
between communities developing climate projections (the ‘producers’) and the ‘users’ of the
modeling products, specifically those responsible for the creation and dissemination of impact
analyses aimed at supporting policy development (e.g., Dilling & Lemos, 2011; Lemos et al.,
2012; Schoeman et al., 2023). This gap in communication and understanding, amplified by
differences in technical language, disciplinary norms, and risk perception, can lead to serious
consequences when models are applied beyond their original intent (van den Hurk et al., 2018;

Morrison, 2021).

Because models are simplified representations of complex systems, decisions regarding what to
include, how to configure experiments, and how to interpret outputs are guided by the specific
purposes of their developers (Morrison & Lawrence, 2023). When these upstream modeling
decisions are misaligned with downstream user needs, there is a risk that model outputs may be
inaccurate, misleading, or even harmful when used for applied purposes such as policy
development (Harvard & Winsberg, 2022). This potential for misuse due to representational
inadequacies in climate models has not gone unnoticed: Briley et al. (2021) assessed CMIP5
models to determine whether they had adequate representation of lake-atmosphere-land
interactions for use in the Laurentian Great Lakes region, where these processes are significant
drivers of local climate. The authors found that over half the models were inadequate in how
they represented lakes, making them unfit for use to answer questions for the region. Lehner et
al. (2019) evaluated the adequacy of runoff output fields in models, and concluded with a heavy
warning to exercise caution when using the model output for certain purposes given discovery of
instances where models produce the right answers for the wrong reasons. Similarly, Nissan et al.
(2019) found that the metrics provided in modeling can fail to adequately capture the

phenomenon that downstream users care about, and lead to the mischaracterization of risk.

In response to these challenges, many have recommended the adoption of co-production and co-
design practices throughout the modeling process (Hewitt et al., 2021; Koren et al., 2022; Reed

et al., 2023). These approaches aim to ensure that decisions about model structure, experimental
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design, and uncertainty communication are informed by diverse user perspectives, increasing the
fitness of the models for their intended use and reducing the likelihood of misuse. Critically, this
collaborative design process enhances the accessibility, relevance, and legitimacy of modeling
products (Dilling & Lemos, 2011), especially in applied contexts like ecosystem impact

assessments of climate intervention strategies.

Effective co-design requires early and sustained engagement between modelers and users,
enabling knowledge gaps to be jointly identified, uncertainties to be holistically assessed, and
modeling outcomes to be translated into actionable insights (Figure 5; Enquist et al., 2017,
Sheppard et al., 2011). While many existing engagement efforts, such as regional climate
modeling feedback in Germany (Huebener et al., 2017), stakeholder interviews in Australia
(Wiseman et al., 2010), and visualization focus groups in Canada (Newell et al., 2021), have
occurred after model development, the future of climate modeling will benefit from transforming
the users into co-producers. This shift can foster shared ownership of the modeling process and
strengthen the perceived usability, credibility, and legitimacy of resulting products for climate

policy, management, and governance (Cash et al., 2003; Ahmed & Palermo, 2010).
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Figure 5. Integration of climate and impact models into policy, planning and governance
decisions relies on a feedback process at all stages between the producers and the users. Through
reporting, local actions, and planning sessions, the models become better informed for the
producers and more applicable to the needs of the users. This feedback process is an iterative
loop that relies on open, adaptable, and interdisciplinary communication to connect the co-design

to the action.

7. DISCUSSION

For climate intervention and the world’s oceans, the challenge the world faces moving forward is
determining how to make decisions that balance sustainable fisheries, carbon sequestration
potential, and the risks to marine ecosystems. These determinations should be made while more
broadly balancing the likely impacts of an intervention, the risks and potential economic or
ecological co-benefits, against the baseline global scenarios of more severe climate disruption.
This challenge involves balancing non-monetary goals, such as preserving biodiversity, with
maintaining ecosystem services and managing the costs of environmental damage. As CDR at
climatically-relevant scales becomes increasingly needed to avoid surpassing warming
thresholds, the critical question is how it can be implemented with minimal harm to ecosystems,
ensuring that biodiversity, ecosystem services, and food security are not adversely affected. SRM
deployment and governance face similar considerations including grappling with the potential to
reduce climate risks versus the likelihood of introducing new risks (Felgenhauer et al., 2022).
Addressing these challenges requires the involvement of experts from numerous fields including
but not limited to economists, social scientists, and ecologists, as their expertise is crucial in
navigating the many unknowns in this space, and transferring lessons learned from resource
management to climate management. Effective interdisciplinary engagement will necessitate

both strategic, long-term approaches and tactical, short-term actions in ecosystem management.

Even with current and proposed nature-based and technological solutions, CDR is only capturing
a fraction of the carbon necessary to meet climate goals. Approximately 0.27-0.68 GtC per year
of CDR is already occurring, but nearly all of this is from nature-based strategies with low (<100

yr) durability such as forest restoration rather than through novel technology (Smith et al., 2024).
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Moreover, this estimate is subject to substantial uncertainties related to measurement methods,
and recent analyses suggest that self-reported forest-based CDR may overestimate actual carbon
removal due to issues with additionality (i.e., whether the carbon removal would have occurred
without the intervention; Badgley et al., 2022; Probst et al., 2024). Limiting warming to 1.5°C
with no overshoot necessitates the removal of anywhere between 420 and 1100 billion tons of
COz cumulatively from all possible sources, which would require between 200-500 years at
current rates of CDR (Smith et al., 2024). However, this carbon removal target continues to rise
due to limited decarbonization. Challenges to industrial-scale carbon capture and storage include
high costs, land use requirements, lack of infrastructure and regulatory frameworks, among many
others. Furthermore, only some forms of CDR can achieve long-term carbon sequestration, as the
effectiveness of these strategies depends on the processes involved, including how and where the
carbon is captured and stored, and the long-term stability of those storage methods (Siegel et al.,

2021; Smith et al., 2024).

Despite already substantial impacts to ocean warming and the balance of the carbon cycle, the
ocean remains an important lever for carbon sequestration. Approximately 2-3 billion tons of
carbon released into the atmosphere per year are currently absorbed by the ocean, equal to about
one third of present human emissions, with novel technologies aiming to increase this capacity
(Friedlingstein et al., 2023). For example, kelp cultivation has been estimated to provide
potential sequestration of as much as 0.03 GtC yr!' (~0.3% of 2023 global emissions), which
could require approximately 73,000 square kilometers in an optimal growth area to achieve
(National Academies of Science, Engineering, and Medicine, 2022), while some anoxic basins
may have the capacity to store several GtC in total (Raven et al., 2024). Designating areas for
CDR activities presents an extensive list of considerations and tradeoffs, including interactions

between ongoing climate change and a suite of climate interventions.

While terrestrial CDR projects have been undergoing testing and development for decades,
marine CDR pilot projects are beginning to ramp up, with some efforts aiming to be fully
operational within the next 5 years. For agencies to effectively evaluate proposals and permit
applications for new CDR projects, transparency surrounding the expected positive or negative

cumulative impacts is crucial. Shifts in community composition as a result of even local-scale
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disturbances could influence food webs (van Denderen et al., 2021; Krumhardt et al., 2022),
carbon export (Boyd & Newton, 1995), and trophic transfer efficiencies (Boxhammer et al.,
2018); it is important to understand if and how such shifts could propagate beyond their localized
response. Additional key factors to assess are the spatial extent of the proposed project, expected
duration, and whether the anticipated benefits justify the scale of intervention needed to make
any significant dent in the global carbon balance. Multiple organizations have taken on the
challenge of establishing accounting procedures and environmental safeguards, and reporting
standards for CDR (AGU, 2023; Reinhard et al., 2023; Reykjavik Protocol, 2024), but there is
still a critical need for a structured and globally accepted code of conduct to govern CDR
research moving forward to ensure responsible, equitable, and transparent research practices
(Loomis et al., 2022). Complementing such governance frameworks is the equally important task
of developing robust monitoring, reporting, and verification (MRV) systems to quantify carbon
removal as well as detect and attribute unintended ecological consequences across trophic levels.
This review highlights potential ecosystem impact pathways and current modeling limitations,
offering a basis for MRV standards that can connect observed ecological changes to specific
climate interventions. Monitoring priorities could include shifts in key ecosystem drivers
discussed throughout, such as plankton community composition, oxygen concentrations, or
carbonate chemistry (e.g., aragonite saturation). Ultimately, future MRV efforts should

emphasize flexible, iterative approaches capable of adapting to emergent ecosystem responses.

The landscape of research on climate intervention is currently fragmented across the
communities investigating specific interventions. Individual interventions are generally
investigated and understood in isolation (e.g., scenarios focus on the specifics of plausible
deployment for MCB or OAE alone, not MCB and OAE together; Baur et al., 2022; Lockley et
al., 2019). As a result, there is a large and potentially hazardous gap in our understanding related
to the multitude of intersecting complexities in implementation, interactions between
interventions, and potential conflicting mechanisms and impacts. Given that intervention
schemes respond to different aspects of climate change, work on unique temporal and spatial
scales, and will likely have different consequences, there will likely be motivation to adopt a
combination of interventions to respond to climate change (MacMartin et al., 2018). Therefore,

providing adequate and usable information appropriate for decision making on combined
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interventions and their synergistic impacts is critical. For example, implementing SRM and
biotic CDR simultaneously will likely have compounding impacts as, for example, shifts in the
intensity and spectrum of sunlight due to SRM could impact photosynthesis and carbon fixation
in the surface ocean. The consequences of the interventions may be complex and interactive, and
this complexity requires equivalent interdisciplinary research (Moustakis et al., 2025). Holistic
evaluation of the interactive and complex landscape of impacts is essential for the development

of sound climate intervention policy (Diamond et al., 2022).

The growing interest and investment in climate intervention research represents a potentially
pivotal moment where organizational and policy frameworks transition to intentionally — as
opposed to accidentally — modifying the climate. Lessons learned in ecosystem management
could offer insights on how to accomplish climate management. The current climate transition is
analogous to the paradigm shift in fisheries management after the collapse of major fisheries,
such as Northwest Atlantic cod and Pacific salmon (Beamish, 2022; Myers et al., 1997), caused
by overfishing and habitat loss. Fisheries management has since undergone significant changes
to prevent future overexploitation and ensure the recovery of fish populations in some areas.
Frameworks have also been developed to help navigate the complex processes of stakeholder
engagement, balancing of competing interests, and safeguarding natural resources (e.g., Dobush
et al., 2021; Mease et al., 2018; Pomeroy & Douvere, 2008). These strategies could be adapted to
the climate sphere and expanded upon to embrace the higher-level complexity and expanded
scope of the global climate crisis. For example, large-scale climate interventions like SAI have
global implications, affecting nearly all aspects of human life, thus dramatically expanding the
pool of stakeholders and issues that need to be considered. In contrast, interventions that focus
their acute impacts in a local area or political jurisdiction, present a more contained set of
challenges, though no less complex. Co-designed research into climate management strategies
that engages CDR researchers, modelers, ecologists, and resource managers gives humanity its

strongest path forward to protect marine ecosystems in the face of climate change.

8. CONCLUSIONS
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Climate intervention strategies are currently being explored as potential tools to reduce the risks
of climate-driven impacts, including extreme temperatures, biodiversity loss and threats to food
and water security. While these strategies could help limit some of the most severe effects of
climate change, they also carry substantial risks of disrupting regional climates, ecological
processes, and biogeochemical cycles in marine environments, with uncertain consequences for
fisheries and marine biodiversity. Critically, current models do not fully capture these complex
ecological responses, and few studies have directly quantified the impacts of climate intervention
on marine food webs or fisheries. This review comprehensively identifies the primary processes
through which climate intervention could impact marine ecosystems, then qualitatively assesses
each process with respect to its potential to perturb marine ecosystems and how well it is
simulated in existing models. The identified overlap between high-impact processes and poor
model representation provides a roadmap for determining which technologies have the most
high-risk uncertainty and which research directions are most urgent. Moving forward, a
combination of rigorous research, model development, transparent risk assessment, and inclusive
governance are essential to fully understand the potential impacts of these interventions on both

ecosystems and society.
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